
Identification and validation 
of an eight‑lncRNA signature that predicts 
prognosis in patients with esophageal 
squamous cell carcinoma
Jinfeng Zhang, Xiaodong Ling, Chengyuan Fang and Jianqun Ma* 

Abstract 

Background:  Esophageal squamous cell carcinoma (ESCC) is correlated with worse 
clinical prognosis and lacks available targeted therapy. Thus, identification of reliable 
biomarkers is required for the diagnosis and treatment of ESCC.

Methods:  We downloaded the GSE53625 dataset as a training dataset to screen dif-
ferentially expressed RNAs (DERs) with the criterion of false discovery rate (FDR) < 0.05 
and |log2fold change (FC)| > 1. A support vector machine classifier was used to find 
the optimal feature gene set that could conclusively distinguish different samples. An 
eight-lncRNA signature was identified by random survival forest algorithm and mul-
tivariate Cox regression analysis. The RNA sequencing data from The Cancer Genome 
Atlas (TCGA) database were used for external validation. The predictive value of the 
signature was assessed using Kaplan–Meier test, time-dependent receiver operating 
characteristic (ROC) curves, and dynamic area under the curve (AUC). Furthermore, a 
nomogram to predict patients’ 3-year and 5-year prognosis was constructed. CCK-8 
assay, flow cytometry, and transwell assay were conducted in ESCC cells.

Results:  A total of 1136 DERs, including 689 downregulated mRNAs, 318 upregulated 
mRNAs, 74 downregulated lncRNAs and 55 upregulated lncRNAs, were obtained 
in the GES53625 dataset. From the training dataset, we identified an eight-lncRNA 
signature, (ADAMTS9-AS1, DLX6-AS1, LINC00470, LINC00520, LINC01497, LINC01749, 
MAMDC2-AS1, and SSTR5-AS1). A nomogram based on the eight-lncRNA signature, 
age, and pathologic stage was developed and showed good accuracy for predicting 
3-year and 5-year survival probability of patients with ESCC. Functionally, knockdown of 
LINC00470 significantly suppressed cell proliferation, G1/S transition, and migration in 
two ESCC cell lines (EC9706 and TE-9). Moreover, knockdown of LINC00470 downregu-
lated the protein levels of PCNA, CDK4, and N-cadherin, while upregulating E-cadherin 
protein level in EC9706 and TE-9 cells.

Conclusion:  Our eight-lncRNA signature and nomogram can provide theoretical 
guidance for further research on the molecular mechanism of ESCC and the screening 
of molecular markers.
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Background
Esophageal cancer (EC) is the seventh most common type of malignancy [1], which is his-
tologically divided into two subtypes: esophageal squamous cell carcinoma (ESCC) and 
esophageal adenocarcinoma (EAC) [2]. Accounting for > 90% of EC cancers, ESCC is the 
main EC histologic type, particularly in high-incidence areas of Asia and Africa [2, 3]. 
Recently, major progress has been made in diagnostic and medical management, especially 
surgical techniques, chemotherapy, and radiotherapy. Unfortunately, most patients with 
ESCC have suffered extremely poor outcome mainly due to being diagnosed at advanced 
stage[4, 5]. Hence, there is an urgent need for identification of reliable biomarkers and tar-
gets associated with the prognosis of ESCC.

Nowadays, long noncoding RNAs (lncRNAs) are defined as a class of non-protein-coding 
RNA transcripts larger than 200 nucleotides in length [6], which have important regulatory 
roles in multiple biological processes, including cell differentiation, proliferation, glucose 
metabolism, and immune response [7, 8]. Aberrantly expressed lncRNAs have contributed 
to the progression of ESCC pathogenesis from the view of prognosis and cellular functions. 
For example, upregulation of LINC01296 was associated with poor prognosis and pro-
moted cell proliferation and migration in ESCC [9]. Gao et al. [10] highlighted the pivotal 
role of lncRNA CASC9 as a novel diagnostic, prognostic biomarker, and a potential ther-
apeutic target of ESCC. Similarly, LOC100133669 was upregulated in ESCC tissues, and 
high LOC100133669 expression was associated with poor prognosis of patients with ESCC 
[11]. Nevertheless, our knowledge on the prognostic role of lncRNAs in ESCC is far from 
sufficient. Currently, the advancement of high-throughput microarray platforms has helped 
us perform comprehensive and systemic analysis of lncRNA profiling analysis in ESCC 
prognosis.

Two major online databases have provided comprehensive cancer genomic datasets: 
Gene Expression Omnibus (GEO; http://​www.​ncbi.​nlm.​nih.​gov/​geo/) database, a com-
prehensive library of gene expression in the National Center of Biotechnology Informa-
tion (NCBI) [12], and The Cancer Genome Atlas (TCGA, https://​gdc-​portal.​nci.​nih.​gov/), 
launched in 2006 by the National Cancer Institute (NCI) and the National Human Genome 
Research Institute (NHGRI), which contains RNA sequencing (RNA-seq) data and is the 
database with the most large-scale sequencing results [13]. The methods of mining these 
two databases mainly focus on the screening of differentially expressed RNAs (DERs) and 
the analysis of gene regulation networks.

Considering the updated gene expression data and related prognostic information in 
GEO and TCGA databases, we downloaded lncRNA data, screened DERs, constructed 
support vector machine (SVM) classifier, and established and validated a risk prediction 
model for survival prognosis. In addition, we validated the roles of the target gene in vitro.

Materials and methods
Dataset preparation

The gene expression profile GSE53625 [14], including 179 ESCC tumor samples and 
matched controls, was downloaded from Gene Expression Omnibus (GEO: http://​www.​

http://www.ncbi.nlm.nih.gov/geo/
https://gdc-portal.nci.nih.gov/
http://www.ncbi.nlm.nih.gov/geo/
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ncbi.​nlm.​nih.​gov/​geo/) database [15] under the GPL18109 platform (Agilent human 
lncRNA + mRNA array V.2.0). These 179 samples from GEO were used as a training 
set. Meanwhile, the data of RNA-seq expression, including 161 tumor tissue samples 
(80 squamous carcinoma and 81 adenocarcinoma) and 11 controls (platform: Illumina 
HiSeq 2000 RNA Sequencing), were obtained from the TCGA database. We kept 80 
squamous carcinoma sample as the validation set. Statistical clinical information of 
patients in the training set and validation set is summarized in Table 1.

Identification of significantly DERs

Differential expression analyses were performed for the identification of differentially 
expressed RNAs (DERs), including lncRNAs and mRNAs (hereafter referred to as “DEl-
ncRNAs” and “DEmRNAs,” respectively) between 179 tumor samples and 179 control 
samples using Limma package version 3.34.7 in R3.4.1 language [16]. The same cut-
off value (FDR < 0.05 and |log2FC|) was taken as the inclusion criteria for selection of 
DElncRNAs and DEmRNAs. According to the value of DERs in training set, pheatmap 
version 1.0.8 in R3.4.1 language [17] based on centered Pearson correlation algorithm 
[18] was utilized to perform bidirectional hierarchical clustering for describing the gene 
expression differences between tumor samples and control samples.

Construction and evaluation of SVM classifier

Combined with survival information in training set, we performed univariate Cox 
regression analysis from survival package version 2.41–1 in R3.4.1 language [19] to 
screen significantly prognostic-related DERs (PDERs, including PDElncRNAs and 
PDEmRNAs) with log-rank p-value < 0.05 as the cutoff criterion. The screened PDElncR-
NAs were used to conduct recursive feature elimination (RFE) analysis in caret pack-
age in R3.4.1 language [20, 21] to extract the optimal feature genes with the minimum 
root mean square error (RMSE) obtained by the 100-fold cross-validation. Subsequently, 
these optimal feature genes were applied to construct Sigmoid kernel support vector 
machine (SVM) model using the R3.4.1 e1071 package (https://​cran.r-​proje​ct.​org/​web/​

Table 1  Clinical characteristics of patients with ESCC in this study

Clinical characteristics Training set (GSE53625, 
N = 179)

Validation set 
(TCGA, N = 80)

Age (years, mean ± SD) 59.34 ± 9.03 58.19 ± 10.49

Gender (male/female) 146/33 69/11

Alcohol (yes/no/–) 106/73 59/19/2

Tobacco (yes/no) 114/65 42/38

Pathologic N (N0/N1/N2/N3/–) 83/62/22/12 45/26/5/1/3

Pathologic T (T1/T2/T3/T4/–) 12/27/110/30 7/27/41/3/2

Pathologic stage (I/II/III/IV/–) 10/77/92/0 6/47/22/3/2

Arrhythmia (yes/no) 43/136 –

Pneumonia (yes/no) 15/164 –

Anastomotic leak (yes/no) 12/167 –

Adjuvant therapy (yes/no/–) 104/45/30 –

Death (dead/alive) 106/73 25/65

Overall survival time (months, mean ± SD) 36.25 ± 22.86 16.37 ± 12.28

http://www.ncbi.nlm.nih.gov/geo/
https://cran.r-project.org/web/packages/e1071
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packa​ges/​e1071) [22]. We then evaluated the model’s performance in GSE53625 train-
ing set and TCGA validation set using area under the curve (AUC) in receiver operat-
ing characteristic (ROC) curve. Meanwhile, we calculated each index value of the ROC 
curve, including sensitivity, specificity, positive prediction value (PPV), and negative 
prediction value (NPV).

Identification of signature lncRNAs and RS calculation

On the basis of the optimal feature genes, signature lncRNAs correlated with inde-
pendent prognosis were identified using a multivariable Cox proportional hazards 
model implemented with the R3.4.1 survival package version 2.41–1 [19] with log-rank 
p-value < 0.05 as the cutoff criterion. Then, we calculated risk score (RS) following the 
risk formula: ∑βlncRNA × ExplncRNA, where βlncRNA indicates the coefficient and ExplncRNA 
indicates the expression level of signature lncRNA. Afterwards, all patients in training 
set and validation set were divided into high-risk and low-risk groups according to their 
median risk score. We used the Kaplan–Meier method in R3.4.1 survival package ver-
sion 2.41–1 [19] to analyze the overall survival of the two groups and verified the predic-
tion value of the model by plotting ROC curves for the training set and validation set.

Independent prognosis analysis and nomogram construction

The prognostic value of clinical variables and the RS calculated based on lncRNA signa-
ture in training set was initially assessed in univariate Cox proportional hazards regres-
sion analyses. Subsequently, each significantly different variable was further evaluated in 
a multivariate Cox proportional hazards regression analysis. The log-rank p-value < 0.05 
was served as the cutoff criterion. Furthermore, a nomogram to predict patients’ 3-year 
and 5-year prognosis was constructed using R3.4.1 rms package version 5.1–2 (https://​
cran.r-​proje​ct.​org/​web/​packa​ges/​rms/​index.​html) [23, 24].

Prediction analysis of signature lncRNA‑related genes and functional enrichment

To evaluate the function of signature lncRNAs, we first identified mRNAs significantly 
related to the signature lncRNAs via calculating the Pearson correlation coefficient 
(PCC) between 8 signature lncRNAs and 92 PDEmRNAs in the data from the train-
ing set using the cor.test function in R3.4.1 language [25]. After screening the connec-
tion pairs with RCC > 0.6, signature lncRNA and PDEmRNAs co-expression network 
was constructed and visualized using Cytoscape version 3.6.1 [26]. Subsequently, these 
PDEmRNAs in co-expression network were inputted into David website (https://​david.​
ncifc​rf.​gov) to perform GO biological process and KEGG pathway enrichment analysis, 
with p < 0.05 as the cutoff value.

Clinical samples and cell lines

The tissue samples used were collected from the Harbin Medical University Cancer 
Hospital between September 2018 and October 2019, including 15 ESCC tissues and 15 
adjacent tissues, all from surgically removed specimens. The study was approved by the 
ethics committee of the Harbin Medical University Cancer Hospital, and each patient 
signed a written informed consent form.

https://cran.r-project.org/web/packages/e1071
https://cran.r-project.org/web/packages/rms/index.html
https://cran.r-project.org/web/packages/rms/index.html
https://david.ncifcrf.gov
https://david.ncifcrf.gov
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Two ESCC cell lines (EC9706 and TE-9) were purchased from the Cell Bank of Type 
Culture Collection of Chinese Academy of Sciences (Shanghai, China), which were cul-
tured in DMEM with 10% FBS (Gibco, USA) at 37 °C containing 5% CO2.

Cell transfection

For gene knockdown, EC9706 and TE-9 cells were seeded into six-well plates at a density 
of 3 × 105 cells per well to 80% confluence and transfected with small interfering RNA 
targeting LINC00470 (si-LINC00470) or negative control (si-NC) generated by GeneP-
harma (Shanghai, China) in accordance with the instructions of Lipofectamine 3000 
Reagents (Invitrogen, USA). After 48 h, cells were harvested for further analysis.

Quantitative real‑time PCR analysis

Total RNA was extracted from tissues and cells using TRIzol reagent (TakaRa, Dalian, 
China), and reverse transcription was performed with PrimeScript RT Reagent Kit 
with gDNA Eraser (TakaRa, Dalian, China). Quantitative real-time PCR analysis was 
conducted on LightCycler 480 II Real-Time PCR System (Roche, Basel, Switzerland) 
using SYBR Premix Ex Taq II (TakaRa). The primers used in our study were as follows: 
LINC00470, forward 5′-CGT​AAG​GTG​ACG​AGG​AGC​TG-3′ and reverse 5′-GGG​GAA​
TGG​CTT​TTG​GGT​CA-3′; GAPDH forward 5′- GTC​AAC​GGA​TTT​GGT​CTG​TATT-
3′ and reverse 5′- AGT​CTT​CTG​GGT​GGC​AGT​GAT-3′. The relative expression level 
LINC00470 was calculated using 2−ΔΔCT method and normalized to GAPDH.

Cell proliferation assay

CCK-8 assay was performed to evaluate the cell proliferation ability in ESCC cells. In 
brief, transfected cells were inoculated into 96-well plates at a density of 3000 cells per 
well. At the indicated timepoint (0, 24, 48, and 72 h, respectively), 10 µl of CCK-8 solu-
tion (Sigma-Aldrich, USA) was added to each well. After 2 h incubation, the absorbance 
in each well was measured at 450 nm under a microplate reader.

Flow cytometry

The cell cycle distribution was analyzed using flow cytometry. Briefly, transfected cells 
(1 × 106) were harvested, washed with PBS, and fixed by ice-cold ethanol (70%) over-
night at 4 °C. Afterwards, cells were washed with PBS twice and stained with propidium 
iodide (PI) for 30 min at 37 °C. The DNA content of stained cells was determined using 
BD FACSCalibur flow cytometer (BD Biosciences, Franklin Lakes, NJ, USA) and ana-
lyzed with ModFitLT.

Cell migration assay

Cell migration was measured using transwell 24-well chambers (Corning Inc, Corning, 
NY, USA). In brief, transfected cells (5 × 105) were harvested and resuspended in serum-
free medium. Then, the cell suspensions were added to the upper chamber, and 600 µl 
medium containing 15% FBS was added to the lower chamber. After 12 h culture, the 
migratory cells in the lower chamber were fixed with 4% paraformaldehyde for 10 min 
and stained in 0.5% crystal violet (Sigma-Aldrich, USA) for 30 min. Finally, migratory 
cells were photographed and counted from five random fields under a light microscope.
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Western blot analysis

Total protein sample was extracted from cell lines with RIPA lysis buffer (Beyotime 
Institute of Biotechnology, Shanghai, China). Proteins of equal amounts (30 μg) were 
separated by 10% SDS-PAGE and transferred to PVDF membranes (Millipore). After 
blocking with 5% nonfat milk, the membranes were incubated with primary anti-
bodies against PCNA (1:1000, ab18197, Abcam), CDK4 (1:1000, ab226474, Abcam), 
E-cadherin (1:1000, ab219332, Abcam), N-cadherin (1:1000, ab76059, Abcam), and 
GAPDH (1:5,000; ab8245; Abcam) overnight at 4 °C. After an incubation with horse-
radish-peroxidase-conjugated secondary antibody (1:5000, SC-2005, Santa Cruz, Inc.) 
for 2  h at room temperature, the protein bands were visualized with the enhanced 
chemiluminescence (ECL) Plus kit (Beyotime Institute of Biotechnology).

Statistical analysis

All quantitative data were analyzed using GraphPad Prism 5 (La Jolla, CA, USA) and 
expressed as mean ± standard deviation (SD). Differences between si-NC and si-
LINC00470 groups were assessed using Student’s t-test. A p-value of < 0.05 was con-
sidered statistically significant.

Results
Identification of significantly DERs

Significant DERs were first identified among 179 tumor samples compared with 179 
control samples in the training set. A total of 129 DElncRNAs (74 downregulated and 
55 upregulated) and 1007 DEmRNAs (689 downregulated and 318 upregulated) were 
identified and are listed in Additional file 1: Table S1. These data were used to build 
the volcano plot of DElncRNAs and DEmRNAs (Fig. 1A) and the bidirectional hier-
archical clustering heatmap (Fig.  1B), indicating the samples tend to cluster in two 
distinct directions.

Optimal feature gene selection

A total of 114 PDERs, including 22 PDElncRNAs and 92 PDEmRNAs, were obtained 
after univariate Cox regression analysis and are listed in Additional file 2: Table S2. 
Based on the screened 22 PDElncRNAs, the lncRNA combination with the low-
est RMSE was selected as the optimal feature genes in the RFE recursive algorithm 
screening. As shown in Fig.  2, when the number of lncRNAs was 13, the optimal 
parameter (minimum RMSE = 0.1352) was obtained, and corresponding 13 optimal 
feature genes are summarized in Additional file  3: Table  S3. A classification model 
was constructed in training set, whose performance was assessed in the GSE53625 
training set and TCGA validation set. The classification results of samples based on 
the classifier are shown in the scatter diagram in Fig. 3 (left), in which the points with 
two different colors and shapes are clearly distinguished. The area under the ROC 
curve is shown in Fig. 3 (right), and corresponding index values of the ROC curve are 
presented in Table 2. ROC curve analysis revealed an AUC of 0.997 in the training set 
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and 0.901 in the validation set. These results indicate that these optimal feature genes 
could be used as effective and accurate ESCC diagnostic biomarkers.

Identification and validation of an eight‑signature lncRNAs

Multivariate Cox regression analysis was used to develop signature lncRNAs that 
are independent predictors of the optimal feature genes in the SVM model. An 
eight-lncRNA signature was identified, including ADAMTS9-AS1, DLX6-AS1, 
LINC00470, LINC00520, LINC01497, LINC01749, MAMDC2-AS1, and SSTR5-AS1. 
The risk coefficients suggested that ADAMTS9-AS1, LINC01497, and MAMDC2-
AS1 were risk factors for ESCC (coef > 0), whereas DLX6-AS1, LINC00470, 
LINC00520, LINC01749, and SSTR5-AS1 appeared to be protective factors (coef < 0) 
(Table  3). The RS of each patient in the training set and validation set was calcu-
lated with the following formula: RS = (0.147172) × ExpADAMTS9-AS1 + (−0.063991) 

Fig. 1  Volcano plot and bidirectional hierarchical clustering heatmap. A Left: volcano plot depicting the 
DEGs; the X-axis represents the log-transformed values of false discovery rates, and the Y-axis indicates 
the average differences in gene expression. Green and orange dots indicate the down- and upregulated 
DEGs in tumor. The red horizontal dotted line indicates FDR < 0.05, and two red vertical dashed lines 
indicate |log2FC|> 1. Right: proportional distribution bar chart of DElncRNAs and DEmRNAs; pink and green 
represent the significantly upregulated and downregulated percentages of DERs, respectively. B Bidirectional 
hierarchical clustering heat map based on DERs (left lncRNA, right mRNA) expression levels; the white and 
black samples below represent control and tumor samples, respectively
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× ExpDLX6-AS1 + (−0.112843) × ExpLINC00470 + (−0.065239) × ExpLINC00520 + (0.18470
9) × ExpLINC01497 + (−0.166036) × ExpLINC01749 + (0.104274) × ExpMAMDC2-AS1 + (−0.
163769) × ExpSSTR5-AS1. The higher the risk score, the worse the clinical prognosis. 

Fig. 2  The RMSE curves of the optimal gene combination based on RFE algorithm. The horizontal axis 
represents the number of lncRNAs variables, and the vertical axis represents cross-validation RMSEs. The 
marked place is the number of lncRNAs required to obtain the optimal value

Fig. 3  Classification efficiency of the optimum feature genes in the SVM model. The scatter diagram (left 
picture) and area under the ROC curve (right picture) in the GSE53625 training set A and TCGA validation set 
B are shown, respectively. Green dots and red squares represent nonmutated and mutated AML samples, 
respectively. The X and Y axes represent the coordinate vector positions of the sample points, respectively
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Accordingly, patients were divided into high- and low-risk groups depending on 
their median risk score to assess the score’s ability to accurately predict survival in 
a Cox regression model (Additional file 4: Table S4). Kaplan–Meier analysis showed 
that patients in the low-risk group had better prognosis than those in the high-risk 
group in the training set (Fig. 4A) and validation set (Fig. 4B). The AUC of the ROC 
curve was 0.989 in the training set and 0.865 in the validation set (Fig. 4C). These 
results confirmed that the risk score could be an independent predictor of overall 
survival.

Table 2  Each index value of the ROC curve in training set and validation set

AUC​ area under the curve, PPV positive prediction value, NPV negative prediction value

Datasets ROC

AUC​ Sensitivity Specificity PPV NPV

Training set (GSE53625, N = 358) 0.997 0.989 0.994 0.994 0.989

Validation set (TCGA, N = 173) 0.901 0.933 0.746 0.907 0.909

Table 3  An eight-lncRNA signature identified by multivariate Cox regression analysis

ID Coefficient p-Value Hazard ratio 95% 
confidence 
interval

ADAMTS9-AS1 0.147172 1.641 × 10−2 1.159 1.042–1.425

DLX6-AS1 −0.063991 4.324 × 10−2 0.938 0.800–0.991

LINC00470 −0.112843 9.950 × 10−3 0.893 0.781–0.922

LINC00520 −0.065239 2.393 × 10−2 0.937 0.840–0.944

LINC01497 0.184709 1.416 × 10−2 1.203 1.004–1.539

LINC01749 −0.166036 4.014 × 10−2 0.847 0.575–0.948

MAMDC2-AS1 0.104274 4.851 × 10−2 1.110 1.028–1.487

SSTR5-AS1 −0.163769 2.209 × 10−2 0.849 0.653–0.903

Fig. 4  Validation of the eight-lncRNA signature. On the basis of the RS prediction model, prognostic-related 
Kaplan–Meier curves were drawn in training set (A) and validation set (B). The blue and green curves 
represent low- and high-risk group, respectively. C The ROC curve of RS prediction model; black and red 
curves represent the ROC curves of training set and verification set, respectively
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The eight‑lncRNA signature was an independent predictor of ESCC prognosis

To investigate whether the eight-lncRNA signature was an independent predictor of 
prognosis among patients with ESCC in the training set, we performed univariate and 
multivariate Cox regression analyses. As illustrated in Table  4, the age, pathologic N, 
pathologic stage, adjuvant therapy, and RS model status were significantly correlated 
with patients’ overall survival in the univariate Cox regression. Moreover, the age, patho-
logic stage, and RS model status based on the eight-lncRNA signature remained three 
independent predictors. In addition, the results from Kaplan–Meier analysis showed 
that age (Fig. 5A) and pathologic stage (Fig. 5B) had a significant impact on the progno-
sis of patients with ESCC (with a log-rank test p-value less than 0.0001). Furthermore, a 
nomogram was constructed that integrated age, pathologic stage, and RS model status to 
analyze the relationship between these three predictors and survival prognosis (Fig. 6A), 

Table 4  Univariate and multivariable Cox proportional-hazards regression analysis on overall 
survival

*Statistically significant; RS risk score, HR hazard ratio, CI confidence interval, NA not analyzed

Univariate analysis Multivariate analysis

Variables HR (95% CI) p-Value HR (95% CI) p-Value

Age (mean ± SD) 1.031 (1.008–1.053) 8.67 × 10−3* 1.027 (1.001–1.055) 4.26 × 10−2*

Gender (male/female) 0.782 (0.489–1.252) 3.05 × 10−1 NA NA

Alcohol (yes/no) 0.864 (0.588–1.269) 4.55 × 10−1 NA NA

Tobacco (yes/no) 0.749 (0.508–1.105) 1.44 × 10−1 NA NA

Pathologic N (N0/N1/N2/N3) 1.438 (1.181–1.751) 2.51 × 10−4* 1.025 (0.751–1.400) 8.75 × 10−1

Pathologic T (T1/T2/T3/T4) 1.187 (0.910–1.549) 2.05 × 10−1 NA NA

Pathologic stage (I/II/III/IV) 1.994 (1.398–2.846) 1.12 × 10−4* 1.904 (1.062–3.412) 4.58 × 10−2*

Arrhythmia (yes/no) 1.120 (0.727–1.725) 6.07 × 10−1 NA NA

Pneumonia (yes/no) 1.425 (0.719–2.823) 3.07 × 10−1 NA NA

Anastomotic leak (yes/no) 1.299 (0.603–2.798) 5.03 × 10−1 NA NA

Adjuvant therapy (yes/no) 2.264 (1.313–3.904) 2.53 × 10−3* 1.655 (0.982–2.787) 5.05 × 10−2

RS model status (high/low) 2.456 (1.651–3.654) 4.71 × 10−6* 2.205 (1.415–3.435) 4.73 × 10−4*

Fig. 5  Screening of prognosis-related clinical characteristics by Kaplan–Meier analyses. A Kaplan–Meier 
curves based on different age. The black curve represents patients (≤ 60 years), and red curve represents 
patients (> 60 years). B Kaplan–Meier curves based on different pathologic stages. The black, red, and blue 
curves represent pathologic I, II, and III sample group, respectively
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which indicated that a higher total number of points on the nomogram presented a 
worse prognosis. Further analysis suggested that the predicted 3-year and 5-year sur-
vival rates by the survival model in the histogram were consistent with the actual 3-year 
and 5-year survival rates (Fig. 6B).

Functional characteristics of signature lncRNA‑related genes

We first calculated the PCC between expression levels of 92 PDEmRNAs and eight-
lncRNA signature and obtained 279 connection pairs with PCC > 0.6 (Additional file 1: 
Table S5). A total of 82 nodes, including 8 signature lncRNAs and 74 PDEmRNAs, were 

Fig. 6  Construction of a nomogram for overall survival prediction in ESCC. A Nomogram survival prediction 
model consists of age, pathologic stage, and RS model status based on the eight-lncRNA signature. B A 
nomogram to predict survival probability at 3 and 5 years after surgery for patients with ESCC, which was 
compared with actual overall survival in patients with ESCC. The horizontal axis represents the predicted 
overall survival rate, and the vertical axis represents the actual overall survival rate. The line segments at both 
endsrepresent the survival rate obtained in the group with the highest consistency between the predicted 
and observed values. The red and black lines represent the 3- and 5-year prediction line charts, respectively



Page 12 of 18Zhang et al. Cellular & Molecular Biology Letters           (2022) 27:39 

obtained in the constructed co-expression network (Fig. 7). Then we performed GO and 
KEGG functional enrichment analysis for these 74 PDEmRNAs. As shown in Fig. 8 and 
Table 5, these mRNAs were mainly enriched in the differentiation and development of 
epidermal and epithelial cells in GO biological process analysis, as well as the secretion 
of digestive juices in KEGG enrichment analysis.

Validation of the expression levels of eight‑lncRNA signature in ESCC tissues

Quantitative real-time PCR analysis was performed to determine the expression 
levels of eight-lncRNA signature in 15 pairs of tumor tissues and matched adjacent 
tissues derived from patients with ESCC. As shown in Fig. 9, the expression levels 

Fig. 7  Co-expression network of 8 signature lncRNAs and 74 PDEmRNAs. The change of color from light to 
dark indicates the change of differential log2FC from low to high. Square and circle indicate signature lncRNA 
and PDEmRNAs, respectively

Fig. 8  Column diagram of GO and KEGG enrichment analysis. The horizontal axis represents the number of 
genes, and the vertical axis represents the item name. The color of the column represents the enrichment 
significance. The closer the color to orange, the higher the significance
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of DLX6-AS1 and LINC00470 were significantly upregulated, while LINC01479, 
LINC01749, and SSTR5-AS1 were markedly downregulated in ESCC tissues com-
pared with adjacent tissues. However, there was no significant differences in expres-
sion levels of ADAMTS9-AS1, LINC00520, or MAMDC2-AS1 between two groups. 
According to the higher fold change, we selected LINC00470 for subsequent func-
tional assays.

Table 5  Functional annotation of PDEmRNAs in co-expression network

Category Term Gene count p-Value FDR

Biology process Keratinocyte differentiation (GO:0030216) 9 6.81 × 10−12 1.72 × 10−9

Epidermal cell differentiation (GO:0009913) 8 7.94 × 10−10 1.00 × 10−7

Peptide cross-linking (GO:0018149) 7 2.02 × 10−9 1.70 × 10−7

Epidermis development (GO:0008544) 8 3.63 × 10−9 2.29 × 10−7

Epithelial cell development (GO:0002064) 3 5.92 × 10−5 2.49 × 10−3

Insulin metabolic process (GO:1901142) 2 7.22 × 10−4 2.03 × 10−2

Regulation of T-helper-2 cell differentiation 
(GO:0045628)

2 7.22 × 10−4 2.03 × 10−2

Negative regulation of endopeptidase activity 
(GO:0010951)

4 5.86 × 10−4 2.03 × 10−2

Epithelial cell morphogenesis (GO:0003382) 2 1.10 × 10−3 2.77 × 10−2

Positive regulation of T-helper cell differentiation 
(GO:0045624)

2 1.31 × 10−3 3.01 × 10−2

Regulation of exocytosis (GO:0017157) 3 1.71 × 10−3 3.61 × 10−2

Monocarboxylic acid transport (GO:0015718) 3 1.91 × 10−3 3.71 × 10−2

Fibrinolysis (GO:0042730) 2 2.66 × 10−3 4.72 × 10−2

KEGG pathway Regulation of tissue remodeling (GO:0034103) 2 2.99 × 10−3 4.72 × 10−2

Negative regulation of peptidase activity 
(GO:0010466)

3 2.97 × 10−3 4.72 × 10−2

Bile secretion 3 5.35 × 10−5 4.33 × 10−3

Salivary secretion 3 9.94 × 10−5 8.05 × 10−3

Complement and coagulation cascades 2 5.56 × 10−4 4.50 × 10−2

Fig. 9  The expression levels of eight signature lncRNAs in ESCC tissues. Quantitative real-time PCR analysis 
was conducted to determine the expression levels of ADAMTS9-AS1, DLX6-AS1, LINC00470, LINC00520, 
LINC01497, LINC01749, MAMDC2-AS1, and SSTR5-AS1 in 15 pairs of ESCC tissues and matched adjacent 
tissues
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Knockdown of LINC00470 suppresses ESCC cell proliferation, G1/S transition, 

and migration

To investigate the function of LINC00470 in ESCC in  vitro, LINC00470 expression 
was first knocked down in EC9706 and TE-9 cells by using si-LINC00470 transfection, 
which was demonstrated by quantitative real-time PCR analysis (Fig. 10A). CCK-8 assay 
showed that knockdown of LINC00470 resulted in growth retardation of EC9706 and 

Fig. 10  Knockdown of LINC00470 suppresses ESCC cell proliferation, G1/S transition, and migration 
in vitro. A Transfection with si-LINC00470 dramatically suppressed LINC00470 expression in EC9706 and 
TE-9 cells. B CCK-8 assay showed that knockdown of LINC00470 resulted in growth retardation of EC9706 
and TE-9 cells. Flow cytometry assay was conducted to analyze cell cycle distribution in transfected EC9706 
C and TE-9 D cells. E Cell migration was evaluated in transfected EC9706 and TE-9 cells by transwell assay. 
Magnification, ×200; scale bar, 100 μm. F Western blot analysis was performed to determine the protein 
levels of PCNA, CDK4, E-cadherin, and N-cadherin in EC9706 and TE-9 cells. Data are expressed as mean ± SD. 
**p < 0.01, ***p < 0.001, compared with si-NC
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TE-9 cells (Fig. 10B). Moreover, the percentage of cells at G0/G1 phase was significantly 
increased, in accordance with S and G2/M phase being decreased in si-LINC00470 
group compared with si-NC group in both EC9706 (Fig. 10C) and TE-9 (Fig. 10D) cells. 
In addition, transwell assay indicated that knockdown of LINC00470 markedly inhib-
ited the cell migration ability in EC9706 and TE-9 cells (Fig.  10E). At the molecular 
level, knockdown of LINC00470 downregulated the protein levels of PCNA, CDK4, 
and N-cadherin, while upregulating E-cadherin protein level in EC9706 and TE-9 cells 
(Fig. 10F). The above results demonstrate that knockdown of LINC00470 can inhibit the 
proliferation and migration of ESCC cells.

Discussion
To the best of our best knowledge, the tumor–node–metastasis (TNM) staging system 
acts as the main transitional algorithm to direct the treatment strategies and also serves 
as a prognostic predictor, but fails to consider the genetic alterations in most types of 
cancers, including ESCC [27, 28]. In recent years, identification of lincRNA-based sig-
natures has received great attention for its potential to aid in the prognosis of cancers, 
including hepatocellular carcinoma [29], bladder cancer [30], and pancreatic cancer [31].

In the present study, we first identified 1136 significantly DEGs between tumor tis-
sues and normal tissues in GEO data and confirmed 114 DEGs correlated with progno-
sis. Finally, eight-lncRNA signature (DLX6-AS1, LINC00470, LINC01479, LINC01749, 
SSTR5-AS1, ADAMTS9-AS1, LINC00520, and MAMDC2-AS1) was constructed for 
ESCC. Importantly, a robust nomogram consisting of age, pathologic stage, and RS 
model status based on the eight-lncRNAs signature was constructed for prediction of 
prognosis for patients with ESCC. Further analysis suggested the predicted 3-year and 
5-year survival rates by the survival model in the histogram were consistent with the 
actual 3- and 5-year survival rates. By integrating diverse prognostic variables based on 
clinical characteristics, nomogram has been a widely used tool in oncology that could 
determine individual probability [32]. Here, our data suggest that our constructed nom-
ogram had better predictive accuracy than each factor alone. Similar to our data, Khalil 
et  al. [33] established a three-lncRNA signature and demonstrated that it could pre-
cisely predict overall survival and disease-free survival for ESCC. Three-lncRNA signa-
ture (RP11-366H4.1.1, LINC00460, and AC093850.2) was constructed by random forest 
algorithm and support vector machine algorithm and identified to be potential predictor 
of overall survival for patients with ESCC [34]. In addition, Mao et al. [32] identified a 
robust seven-lncRNA signature associated with overall survival that was independent 
of classical prognostic factors and molecular subtypes in ESCC. The different lncRNA 
signatures identified in ESCC might be mainly ascribed to different sample resources, 
sample sizes, and analysis methods. Subsequently, our data showed that 74 PDEmRNAs 
in co-expression network were mainly enriched in the differentiation and development 
of epidermal and epithelial cells, as well as the secretion of digestive juices. Consistently, 
ESCC progression was closely associated with epidermal and epithelial cell differentia-
tion and growth [35, 36].

Subsequently, we confirmed that the expression levels of DLX6-AS1 and LINC00470 
were significantly upregulated, while LINC01479, LINC01749, and SSTR5-AS1 were 
markedly downregulated in ESCC tissues compared with adjacent tissues. By searching 
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published articles, we found that no review had explored the intriguing mechanisms 
of these five lncRNAs in ESCC, except DLX6-AS1. Several studies have demonstrated 
that DLX6-AS1 is associated with malignant progression and promotes cell growth 
and metastasis in ESCC cells [37–39]. Considering the relatively higher increased fold 
change in expression level, we selected LINC00470 for further functional experiments. 
As expected, knockdown of LINC00470 significantly suppressed cell proliferation, G1/S 
transition, and migration in two ESCC cell lines (EC9706 and TE-9). In fact, LINC00470 
has been reported to be an oncogene in other malignant tumors. For instance, Wu et al. 
[40] reported that LINC00470 promoted glioma cell proliferation and invasion and 
attenuated chemosensitivity. Yan et al. [41] performed overexpression and knockdown 
experiments to demonstrate the oncogenic functions of LINC00470 on gastric cancer 
cell proliferation, migration, and invasion. The findings by Huang et  al. [42] indicated 
that knockdown of LINC00470 expression inhibited cell proliferation and cell cycle 
progression, while overexpression of LINC00470 showed the opposite effects in hepa-
tocellular carcinoma. In addition, LINC00470 promoted invasiveness, migration, and 
angiogenesis of endometrial cancer cells [43]. Knockdown of LINC00470 could signifi-
cantly inhibit the melanoma cell proliferation and migration, and suppress the growth 
of tumor in vivo [44]. On the basis of this evidence, we speculate that high LINC00470 
expression appears to be related to poor prognosis in ESCC. It must be mentioned that 
there are several limitations to this study, including lack of further in vitro experimental 
study and in vivo data to validate the prognostic performance of our proposed lncRNA 
signature.

Conclusion
In summary, our findings identified and validated an eight-lincRNA signature and nom-
ogram as reliable prognostic tools for ESCC. These eight hub genes (ADAMTS9-AS1, 
DLX6-AS1, LINC00470, LINC00520, LINC01497, LINC01749, MAMDC2-AS1, and 
SSTR5-AS1) may offer novel therapeutic strategies for patients with ESCC.
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