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Abstract: Using the whole-cell patch-clamp technique, we investigated the 
influence of 8-prenylnaringenin on the activity of the voltage-gated Kv1.3 
potassium channels in the human leukemic T lymphocyte cell line Jurkat.  
8-prenylnaringenin is a potent plant-derived phytoestrogen that has been found 
to inhibit cancer cell proliferation. The results show that it inhibited the Kv1.3 
channels in a concentration-dependent manner. Complete inhibition occurred at 
concentrations higher than 10 M. The inhibitory effect of 8-prenylnaringenin 
was reversible. It was accompanied by a significant acceleration of channel 
inactivation without any pronounced change in the activation rate. Of the 
naringenin derivatives tested to date, 8-prenylnaringenin is the most potent 
inhibitor of the Kv1.3 channels. The potency of the inhibition may be due to the 
presence of a prenyl group in the molecule of this flavonoid. The inhibition of 
the Kv1.3 channels might be involved in the antiproliferative and pro-apoptotic 
effects of 8-prenylnaringenin that have been observed in cancer cell lines 
expressing these channels.  
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INTRODUCTION 
 

8-prenylnaringenin (8-isopentenylnaringenin) is a prenylated flavonoid that is 
isolated from common hop (Humulus lupulus) [1]. The major source of this 
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compound in the human diet is beer, in which the female flowers are used as  
a preservative and flavouring agent [2]. 8-prenylnaringenin was identified as the 
most potent phytoestrogen [3, 4], since it showed similar binding characteristics 
to α- and β-estrogen receptors [5]. It may also modulate the process of 
inflammation [6] and angiogenesis [7]. It was shown that 8-prenylnaringenin 
inhibits the activity of P-glycoprotein and MRP1 [8]. It could also inhibit cancer cell 
proliferation [9, 10] and induce apoptosis in the breast cancer cell line MCF-7 [11]. 
It remains unknown whether 8-prenylnaringenin influences the activity of ion 
channels, in particular the activity of voltage-gated potassium channels (Kv). 
However, it is known that the activity of some Kv channels is involved in cancer 
cell proliferation and apoptosis [12]. It was shown that inhibiting some  
Kv channels also inhibited the proliferation of cancer cells in various phases of 
this process [13]. Therefore, some Kv channels may be considered new and 
potentially important molecular targets in cancer therapy [12, 13].  
The Kv1.3 channels belong to the group of Kv channels involved in the 
proliferation and apoptosis of some cancer tissues [13]. They are members of the 
Shaker-related Kv channel family and were discovered in 1984 in human T 
lymphocytes [14]. The biophysical properties of Kv1.3 channels were studied in 
more detail by Cahalan et al. [15]. Kv1.3 channels are expressed not only in 
human, murine and rat T lymphocytes, but also in many other tissues, both 
healthy and cancerous [13, 16]. The activity of Kv1.3 channels plays an 
important role in T lymphocyte cell function, particularly in setting the resting 
membrane potential, cell proliferation, apoptosis and volume regulation [17, 18]. 
Studies of Kv1.3 channels expressed in human T lymphocytes showed that 
blocking them inhibited cell proliferation in the G1 phase [17]. Specific blockers 
of Kv1.3 channels may be applied in selective immunosuppression [17]. 
Several studies demonstrated that Kv1.3 channels have altered expression levels 
in some types of cancer, including breast, colon, pancreas and prostate cancer 
[13, 19-21]. A significantly increased expression of Kv1.3 channels was 
observed in the case of breast, colon and lymph node cancers [13, 19]. However, 
a markedly reduced expression of Kv1.3 channels was detected in kidney, 
pancreas and prostate cancer [19]. Importantly, it was shown that inhibition of 
Kv1.3 channels both by specific (MgTX) and non-specific (TEA) inhibitors also 
inhibits the proliferation of breast cancer cells [20] and lung cancer cells in vitro 
and in vivo [21]. Therefore, Kv1.3 channel inhibitors could be applied in therapy 
of some types of cancer. 
Our studies in recent years showed that some natural plant-derived compounds 
that exert an antiproliferative effect on cancer tissues (such as the isoflavone 
genistein and the substituted stilbene resveratrol) are inhibitors of Kv1.3 
channels in human T lymphocytes [22, 23]. It is important that the 
antiproliferative effect on cancer cells and the inhibition of Kv1.3 channels 
occurred at comparable concentrations of the two named compounds. We 
concluded that the antiproliferative effect of genistein and resveratrol could be at 
least partially related to the inhibition of Kv1.3 channels. 
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Taking into account the inhibition of cancer cell proliferation by  
8-prenylnaringenin and the possible involvement of Kv1.3 channels in this 
process, it was of interest to study the influence of 8-prenylnaringenin on the 
activity of Kv1.3 channels. Since Kv1.3 channels are expressed abundantly and 
endogenously in the human leukemic T cell line Jurkat [24, 25], these cells were 
used in our study as a model system. The results provide evidence that  
8-prenylnaringenin effectively inhibits the Kv1.3 channels expressed in Jurkat T cells.  
 
MATERIALS AND METHODS 
 

Cell culture and solutions 
The human leukemia T cell line Jurkat (clone E6-1) was purchased from the 
American Type Culture Collection (Manassas, VA). The Jurkat T cell line was 
grown in RPMI 1640 medium (Sigma-Aldrich, St. Louis, MO) containing 10% 
heat-inactivated FBS, 10 mM HEPES, and 2 mM glutamate. Cells were grown 
in culture plates at 37ºC in a 5% CO2-humidified incubator. 
During the experiments, cells were placed in an external solution containing  
150 mM NaCl, 4.5 mM KCl, 1 mM CaCl2, 1 mM MgCl2 and 10 mM HEPES 
(pH 7.35), adjusted with NaOH (300 mOsm). The pipette solution contained  
150 mM KCl, 1 mM CaCl2, 2 mM MgCl2, 10 mM HEPES and 10 mM EGTA 
(pH 7.2), adjusted with KOH (280 mOsm). The concentration of free calcium 
ions in the internal solution was below 100 nM, assuming a dissociation constant 
for EGTA at pH 7.2 of 10-7 M [26]. Such a low calcium concentration was 
applied in order to prevent the activation of the calcium-activated K+

 channels 
KCa2.2, which are abundantly expressed in Jurkat T cells [27]. The chemicals 
were purchased from the Polish Chemical Company (POCH, Gliwice, Poland), 
except HEPES and EGTA, which were purchased from SIGMA. 8-prenylnaringenin 
was purchased from Alexis Biochemicals (Lausen, Switzerland). 
 

Patch-clamp recordings 
Dishes with cells were placed under an inverted Olympus IMT-2 microscope. 
Solutions containing the tested compounds were applied using a perfusion 
system developed in our laboratory. The pipettes were made from borosilicate 
glass (Hilgenberg, Germany) and fire-polished before the experiment and have  
a resistance in the range of 3-5 MΩ. 
Whole-cell potassium currents in T lymphocytes were recorded using the patch-
clamp technique [28]. The currents were recorded using an EPC-7 Amplifier 
(HEKA, Germany), low-pass filtered at 3 kHz, and digitized using a CED Micro 
1401 analogue-to-digital converter (Cambridge, UK) with a sampling rate of 10 kHz. 
Two protocols of depolarizing voltage stimuli were used during the experiments. 
The influence of 8-prenylnaringenin on the activity of the channels was 
preliminarily studied with the voltage ramp protocol. Voltage ramps 
depolarizing the cell membrane from –100 mV up to +40 mV were applied 
every 20 s; the ramp duration was 340 ms and the holding potential was –90 mV. 



Vol. 17. No. 4. 2012         CELL. MOL. BIOL. LETT.         
 

562 

Upon application of the voltage ramp protocol, the potassium currents in the 
Jurkat leukemia T lymphocytes were stably recorded for at least 20 min after 
“break-in” to the whole-cell configuration. During the offline analysis, the 
maximal value of Kv1.3 current at the end of a voltage ramp (+40 mV) was 
calculated. The leak current estimated at +40 mV was subtracted from the ramp 
current recorded at this voltage. The estimation of the leak current was 
performed by extrapolating the function fitting the linear component, which was 
supposed to be the leak current, to the potential value of +40 mV. In order to 
study the influence of 8-prenylnaringenin on the channels’ activation and 
inactivation kinetics in more detail, another protocol of depolarizing voltage 
stimuli was applied. This protocol contained 7 depolarizing voltage steps in the 
range from –60 mV to +60 mV (20 mV increment, 100 ms step duration) 
applied every 20 s, with a holding potential of – 90 mV. All of the experiments 
were carried out at room temperature (22-24ºC) and the data are presented as 
means  standard error. 
 

Data analysis  
Since the number of active channels varied significantly among the cells, the 
current amplitudes were presented in terms of a relative peak current (Iprel) 
defined as:  

Iprel = I/Icontr 
where I is the current amplitude and Icontr is the current amplitude recorded on 
the same cell under control conditions. Inactivation kinetics were fitted by the 
single exponential function and described by the value of inactivation time 
constant. Activation kinetics were described by the time-to-peak parameter 
(Tmax), which is determined as the time needed to reach the peak value of Kv1.3 
current upon the channels’ activation during the application of a depolarizing 
voltage step. Statistical analysis was performed applying the one-way analysis of 
variance (ANOVA) or Student’s unpaired t test. The results were considered 
statistically significant when p < 0.05. 
 
RESULTS 
 

Fig. 1 presents an example of the whole-cell currents recorded in Jurkat T 
lymphocytes under control conditions and in the presence of 3 M 8-prenylnaringenin.  
This figure depicts the raw currents without leak subtraction. The currents were 
recorded applying the voltage ramp protocol (see the Materials and Methods 
section). The evoked currents contained a linear and a non-linear component. 
The linear current was presumed to be the leak current, whereas the non-linear 
component was due to the activation of Kv1.3 channels [27].  
Applying 8-prenylnaringenin apparently reduced the amplitude of the Kv1.3 
current to less than half of its control value. Moreover, in contrast to what was 
recorded under control conditions, the ramp currents recorded upon application 
of 8-prenylnaringenin decayed over time. This might indicate that inhibition of 
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8-prenylnaringenin was accompanied by an acceleration of channel inactivation. 
A more detailed study demonstrated that the acceleration of channel inactivation 
was actually the case (see below). The Kv1.3 currents recovered completely 
after the 8-prenylnaringenin was washed out (record “c”). This indicates that the 
inhibitory effect of 8-prenylnaringenin was reversible. 
 

 
 

Fig. 1. 8-prenylnaringenin reduces the intensity of the whole-cell potassium currents 
recorded in Jurkat T lymphocytes using the voltage ramp protocol. The currents are shown 
under control conditions (a), with exposure to 3 M 8-prenylnaringenin (b), and with the 
flavonoid having been washed out (c).  
 

 
 

Fig. 2. The relative peak Kv1.3 current (defined above) plotted vs. 8-prenylnaringenin 
concentration.  
 

The blocking effect of 8-prenylnaringenin was concentration dependent. Upon 
application of 1, 3, 5 and 7 M 8-prenylnaringenin, the relative peak current 
(Iprel) was respectively reduced to 0.86  0.012 (n = 5), 0.38  0.04 (n = 7),  
0.25  0.043 (n = 5) and 0.034  0.015 (n = 5) of the control value. The decrease 
in the current amplitude was statistically significant (p < 0.05, Student’s t test) 
for all concentrations applied. Further increase in the 8-prenylnaringenin 
concentration to 10, 15, 20 and 30 M caused a complete inhibition of Kv1.3 
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currents in Jurkat T lymphocytes. The inhibitory effect of 8-prenylnaringenin 
was reversible at all concentrations (not shown). Fig. 2 shows the relative peak 
current (Iprel) as a function of 8-prenylnaringenin concentration. 
As mentioned above, the inhibitory effect of 8-prenylnaringenin on Kv1.3 
channels was probably accompanied by a significant increase in inactivation 
rate. A more detailed study performed using a protocol with depolarizing voltage 
steps provided evidence that such an increase actually took place. Fig. 3 shows 
examples of normalized whole-cell potassium currents recorded using a voltage 
step to +60 mV under control conditions and upon exposure to 7 M  
8-prenylnaringenin. The figure depicts the currents after leak subtraction 
performed during offline analysis. The inactivation was much more rapid in the 
presence of the flavonoid than under control conditions.  
 

 
 

Fig. 3. Examples of normalized whole-cell potassium currents, after leak subtraction, 
recorded using a voltage step from the holding potential of –90 mV to +60 mV (shown 
schematically above the records) under control conditions (a) and upon exposure to 7 M 
8-prenylnaringenin (b).  
 
 

 
 

Fig. 4. The inactivation time constant in the presence of 7 M 8-prenylnaringenin. 
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Fig. 4 illustrates the inactivation time constant calculated at different values of 
membrane potential in the presence of 7 M 8-prenylnaringenin. Inactivation 
time constants were 20-25 ms upon 8-prenylnaringenin exposure. These values 
were significantly lower (p < 0.05, Student’s t-test) than the inactivation time 
constant of ca. 200 ms estimated for Kv1.3 channels under control conditions 
[29]. The values of inactivation time constants obtained in the presence of  
8-prenylnaringenin did not significantly differ for all membrane potentials in the 
range from +20 to +60 mV (p > 0.05, one-way ANOVA).  
 

 

 
 

Fig. 5. Tmax values for control conditions and upon exposure to 7 M 8-prenylnaringenin. 
 
Since the inactivation rate of the Kv1.3 currents was significantly higher after 
exposure to 8-prenylnaringenin, it was of interest to study the influence of the 
compound on the channels’ activation kinetics. Fig. 5 illustrates the activation 
kinetics in terms of the Tmax parameter estimated for the currents recorded under 
control conditions and upon application of 7 M 8-prenylnaringenin. In contrast 
to the influence on the inactivation kinetics, exposure to the flavonoid did not 
change the activation kinetics significantly (p > 0.05, Student’s t-test).  
 
DISCUSSION 
 

We studied the influence of 8-prenylnaringenin on the activity of Kv1.3 
channels expressed in Jurkat T cells. Our results provide evidence that upon 
exposure to 8-prenylnaringenin the activity of the channels was inhibited in  
a concentration-dependent manner. Complete inhibition occurred at flavonoid 
concentrations higher than 10 M and the blocking effect was reversible. The 
effect was accompanied by a significant acceleration of the inactivation rate, 
whereas the activation kinetics remained unchanged. 
The inhibitory effect of 8-prenylnaringenin on Kv1.3 channels seems to be much 
more potent than the channel inhibition caused by other natural plant-derived 
compounds that exert an antiproliferative effect on cancer cells, such as 
genistein or resveratrol [22, 23]. The results of our previous studies showed that 
genistein did not completely inhibit the channels’ activity when applied at  
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a concentration of 80 M, whereas the inhibitory effect of resveratrol was not 
complete even at 200 M [22, 23]. By contrast, these new results demonstrate 
that 8-prenylnaringenin completely inhibited Kv1.3 channels at concentrations 
higher than 10 M. 
In contrast to what was observed in this study for 8-prenylnaringenin, the 
inhibitory effects of genistein and resveratrol on Kv1.3 channels were not 
accompanied by an acceleration of the inactivation rate [22, 23]. Those effects 
were related to a significant slowing down of activation rate that was not 
observed in this study [22, 23]. Finally, the inhibitory effects of genistein and 
resveratrol were clearly time-dependent, whereas no such clear dependence on 
time was observed in this study. On the other hand, it must be taken into 
consideration that studies on the influence of genistein and resveratrol were not 
performed on Jurkat T cells, but on Kv1.3 channels in human T lymphocytes 
isolated from human peripheral blood [22, 23]. However, preliminary studies 
performed on Kv1.3 channels in human T lymphocytes isolated from peripheral 
blood demonstrated that these channels were inhibited by 8-prenylnaringenin 
and the magnitude of the inhibition did not significantly differ from the effect 
observed in Jurkat T cells [Gąsiorowska – unpublished results]. Therefore, the 
observed differences in the inhibitory effects of 8-prenylnaringenin, genistein 
and resveratrol were not due to the use of different model systems. They were 
probably due to the involvement of different mechanisms of channel inhibition 
by 8-prenylnaringenin, genistein and resveratrol.  
Our earlier experiments provide evidence that the flavonoid naringenin,  
a precursor compound for 8-prenylnaringenin, does not inhibit Kv1.3 channels 
when applied at a concentration of 30 M [30]. The same study showed that 
exposure to two synthetic derivatives of naringenin, 4’,7-dimethylether and  
7-methylether, both at 30 M, respectively inhibited Kv1.3 channels to 4% and 
29% of the control activity. On the other hand, the results of this study 
demonstrate that 8-prenylnaringenin completely inhibited Kv1.3 channels even 
at a concentration of 10 M. Of all the naringenin derivatives tested to date,  
8-prenylnaringenin seems to be the most potent inhibitor of Kv1.3 channels. It is 
possible that the potency of 8-prenylnaringenin to inhibit Kv1.3 channels is  
a consequence of the presence of a prenyl group in the molecule.  
If the ability of 8-prenylnaringenin to inhibit Kv1.3 channels is due to the 
presence of such a prenyl group, it seems likely that other prenylated flavonoids 
or chalcones would be potent inhibitors of Kv1.3 channels. It is known that some 
compounds from these groups, such as 6-prenylnaringenin, xanthohumol and 
isoxanthohumol, are potent inhibitors of cancer cell proliferation, and 
xanthohumol and 6-prenylnaringenin are even more potent inhibitors of 
proliferation than 8-prenylnaringenin [10]. The influence of these compounds on 
the activity of Kv1.3 channels remains to be elucidated. However, the results of 
preliminary studies indicate that xanthohumol inhibits Kv1.3 channels in Jurkat 
T lymphocytes [Gąsiorowska – unpublished results].  
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The inhibition of Kv1.3 channels by 8-prenylnaringenin may be of physiological 
significance. It is known that inhibition of Kv1.3 channels could also inhibit 
proliferation of some cell types, including breast, colon and prostate cancer cells 
[13, 20, 21]. It is also known that 8-prenylnaringenin inhibits the proliferation of 
cells of the human prostate cancer cell lines PC-3 and DU-145 [10]. However, 
the half-blocking concentration of 8-prenylnaringenin for the inhibition of 
proliferation of PC-3 and DU-145 cells was 33.5 ± 1.0 M and 43.1 ± 1.2 M, 
respectively [10]. These values are significantly higher than the concentrations 
needed for the complete inhibition of Kv1.3 channels reported in this study. 
Therefore, further studies are needed to answer to the question whether the 
inhibition of Kv1.3 channels is involved in the inhibition of proliferation of the 
prostate cancer cell lines. 
The inhibition of Kv1.3 channels by 8-prenylnaringenin might also be involved 
in the pro-apoptotic activity of this compound. Studies performed in recent years 
provide evidence that Kv1.3 channels are expressed not only in the plasma 
membrane but also in the inner mitochondrial membrane in human  
T lymphocyte and Jurkat T cells [18]. It is known that inhibition of Kv1.3 
channels expressed in human T lymphocyte mitochondria by the pro-apoptotic 
protein Bax is the first crucial event in the mitochondrial pathway of T cell 
apoptosis [31]. In other studies, it was shown that inhibition of mitochondrial 
Kv1.3 channels in Jurkat T lymphocytes by specific inhibitors, such as 
margatoxin (MgTX), triggers the beginning of the apoptotic cascade in isolated 
mitochondria, similar to the events that occur after Bax-induced inhibition [31]. 
Recently obtained data provide evidence that Kv1.3 channels are expressed in 
the inner mitochondrial membrane in non-lymphocyte cancer cell lines, such as 
the human prostate cancer cell line PC-3 or breast cancer cell line MCF-7 [18]. It 
is possible that 8-prenylnaringenin is able to diffuse across the plasma 
membrane and reach intracellular compartments, so it may inhibit Kv1.3 
channels in the mitochondria. Brunelli et al. showed that 8-prenylnaringenin 
induces apoptosis of MCF-7 cells when applied at 10 and 100 M 
concentrations [11]. Our study showed that a 10 µM concentration of the 
flavonoid is high enough to completely inhibit Kv1.3 channels in the plasma 
membrane. Whether mitochondrial Kv1.3 channels are as sensitive to the 
inhibition by 8-prenylnaringenin as the channels in the plasma membrane and 
whether blocking of these channels is involved in 8-prenylnaringenin-induced 
apoptosis of MCF-7 cells remains to be elucidated.  
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