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Introduction
Cancer continues to be a significant global health concern, with its incidence and 
mortality rates escalating despite advances in therapeutic approaches [1]. One of the 
foremost challenges in cancer treatment is the development of resistance to various 
therapeutic interventions, including chemotherapy, radiotherapy, hormone therapy, 
targeted therapy, and immunotherapy [2]. Therapeutic resistance often leads to treat-
ment failure, disease progression, and decreased patient survival rates [3–5]. Can-
cer therapeutic resistance are associated with various factors, including autophagy, 
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apoptosis, non-coding RNAs regulation, glutathione metabolism and ferroptosis [5–
7]. Unraveling the molecular mechanisms underlying the therapeutic resistance has 
become a focal point of cancer research, driving the quest for innovative strategies to 
enhance treatment efficacy.

In recent years, non-coding RNAs (ncRNAs) have emerged as crucial regulators 
of diverse cellular processes, with circular RNAs (circRNAs) being recognized as a 
class of ncRNAs with intriguing regulatory roles [8]. CircRNAs are characterized by 
their covalently closed loop structure, rendering them resistant to RNA degradation 
pathways [9, 10]. This unique structural feature, along with their widespread presence 
across species and cell types, has garnered increasing attention toward understand-
ing their functional relevance in health and disease [4, 11]. Of particular interest is 
the intricate interplay between circRNAs and autophagy, a conserved cellular deg-
radation process that plays a pivotal role in maintaining cellular homeostasis and 
responding to stress [12].

Autophagy has been identified as a key player in cancer therapeutic resistance. By ena-
bling cells to survive and adapt under adverse conditions induced by therapeutic agents, 
autophagy serves as a double-edged sword, both promoting cell survival and potentially 
contributing to treatment resistance [13–18]. The modulation of autophagy pathways 
has thus emerged as an attractive target for circumventing therapeutic resistance and 
enhancing treatment outcomes. Recent studies have begun to unveil the intriguing con-
nections between circRNAs and autophagy, suggesting a potential nexus between these 
two regulatory networks in the context of cancer therapeutic resistance. CircRNAs can 
modulate autophagy at various stages through different mechanisms, including spong-
ing miRNAs to regulate autophagy-related genes and participating in signaling pathways 
involved in autophagy regulation. By elevating or inhibiting autophagy activity, circR-
NAs influence the response of cancer cells to chemotherapeutic and radiation treat-
ments, thereby impacting therapy sensitivity and resistance. For instance, elevated level 
of circCPM was detected in gastric cancer (GC) patients with 5-FU resistance. CircCPM 
functioned as a sponge to bind miR-21-3p, which indirectly augmented the expression 
of PRKAA2, leading to enhanced autophagic activity and resistance to 5-FU in GC [19]. 
Moreover, circBANP was found to be up-regulated in colorectal cancer (CRC), which 
reduced the level of miR-338-3p, thereby inducing autophagy and contributing to X-ray 
resistance in CRC [20]. However, the precise mechanisms of circRNA action, such as 
their potential role in autophagy-related protein recruitment or translation, remain 
largely unknown. Further study is needed to fully map circRNA functions, and investi-
gating the roles of circRNAs in mediating autophagy in the context of cancer therapeutic 
resistance holds promise for deciphering new therapeutic targets and biomarkers.

This review aims to provide a comprehensive overview of the emerging role of cir-
cRNA-mediated autophagy in cancer therapeutic resistance. We summarize the intricate 
molecular mechanisms through which circRNAs influence autophagy pathways, discuss 
their potential clinical implications as diagnostic markers and therapeutic targets, and 
highlight the opportunities for exploiting this knowledge to develop novel strategies for 
overcoming cancer therapeutic resistance. Through a deeper understanding of the inter-
play between circRNAs and autophagy, this review seeks to contribute to the advance-
ment of personalized and effective cancer treatment approaches.
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CircRNAs: structure, biogenesis, and functions
CircRNAs, a class of non-coding RNA molecules, possess a unique circular structure 
forming a closed loop structure where the 3ʹ and 5ʹ ends are covalently linked. This cir-
cular structure, resulting from a back-splicing event, makes circRNA resistant to deg-
radation by exonucleases ribonuclease R (RNase R), giving them increased stability 
compared to linear RNAs [4]. This stability enabling circRNAs to persist, accumulate, 
and influence cellular regulation over an extended period, potentially contributing to the 
dysregulation of critical signaling pathways in cancer therapeutic resistance. Further-
more, the stability of circRNAs may also impact their interactions with other molecules, 
such as miRNAs or proteins, which are known to be modulators of therapeutic response.

CircRNAs have diverse functions ranging from miRNA sponging and post-transcrip-
tional regulation to potential protein encoding. Numerous studies have demonstrated 
the capacity of circRNAs to mediate different biological processes through several 
mechanisms. These mechanisms include the recruitment of proteins to specific loca-
tions [21], serving as coordinators of RNA binding proteins (RBPs) [22], initiating trans-
lation for novel proteins [23], regulating parental genes transcription [24], establishing 
scaffolds for enzyme–substrate interactions [25], and more broadly, acting as molecu-
lar decoys for miRNAs [19, 20]. CircRNAs contain multiple binding sites for specific 
miRNAs, allowing them to sequester these miRNAs and prevent them from targeting 
their intended mRNA transcripts. This sequestration prevents miRNA-mediated mRNA 
degradation or translational inhibition, effectively influencing the expression of various 
genes involved in pathways such as cell proliferation, differentiation, and apoptosis [9].

Categorized based on their origins and formation mechanisms, circRNAs play diverse 
roles crucial for understanding cancer and therapeutic resistance. The main types 
include: (1) Exon–intron circRNAs (EIcircRNAs), formed through back-splicing, com-
prising both exonic and intronic sequences; (2) Exonic circRNAs (EcircRNAs), derived 
exclusively from gene exons, are formed through back-splicing of exons during pre-
mRNA splicing; (3) Intronic circRNAs (CiRNAs), originating from gene introns, formed 
through lariat-driven circularization; (4) Intergenic circRNAs, generated by circulari-
zation of intron-containing fragments (ICFs) with GT-AG splicing sites, such as tRNA 
intronic circRNAs (TricRNAs) [4, 11, 26]. Following their formation, circRNAs exhibit 
diverse functions depending on their subtypes and cellular localization. For instance, 
exonic circRNAs, mainly in the cytoplasm, act as miRNA sponges and interact with 
RNA-binding proteins, influencing processes linked to cancer. In contrast, intronic cir-
cRNAs, primarily in the nucleus, are thought to play roles in gene regulation, including 
transcription and alternative splicing (as depicted in Fig. 1). Altered expression of cir-
cRNAs has been observed in different types of cancer, with specific circRNAs associ-
ated with cancer-related processes such as cell proliferation, invasion, and metastasis. 
CircRNAs are abundantly expressed in human tissues and body fluids, such as the brain, 
urine, blood, and saliva, and some have been identified as potential biomarkers for can-
cer diagnosis and prognosis [27]. The classification and functional diversity of circRNAs 
underscore their significance in cancer biology and therapeutic resistance.
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Autophagy and cancer therapeutic resistance
Overview of autophagy

Autophagy is a fundamental cellular process that plays a critical role in maintaining 
cellular homeostasis by recycling and degrading damaged or obsolete cellular com-
ponents. It is a highly regulated and dynamic process that involves the formation of a 

Fig. 1  Overview of the autophagy process and regulatory mechanism. Autophagy consists of five 
main steps: initiation, phagophore nucleation, vesicle elongation, docking, and fusion and degradation. 
Autophagy is triggered by various stresses, such as hypoxia, oxidative stress, or energy nutrient deprivation. 
Under these conditions, the AMPK signaling is activated, which results in the dissociation of the ULK1/2 
complex (comprising ULK1/2, ATG101, FIP200 and ATG13) from the mTORC1 complex (including GβL, 
mTOR, and Raptor), thereby promoting phagophore nucleation by the phosphorylating PI3KC3 complex 
(comprising Beclin1, AMBRA1, VPS15, VPS34, and ATG14L), and the production of local PtdIns3P in the 
omegasome. PtdIns3P then recruits PtdIns3P-binding proteins, such as WIPIs, DFCP1 and ATG9 vesicles, 
for phagophore expansion. Two ubiquitin-like conjugation systems are involved in vesicle elongation 
and autophagasome formation. In one system, the ATG12-ATG5-ATG16L complex (E3) is formed under 
the catalysis of ATG7 (E1-like enzyme) and ATG10 (E2-like enzyme). In the other system, cytosolic LC3-I is 
conjugated to phosphatidylethanolamine (PE) under the catalysis of protease ATG4, ATG3 and ATG7 to form 
membrane-bound LC3-PE complex (LC-II). Finally, a large group of molecules, including SNARE complex, 
HOPS complex, RAB GTPases and adaptors, cytoskeleton components, and related motor proteins, promote 
the fusion of the autophagosome and lysosome to form autolysosome, where the inner autophagosomal 
membrane and sequestered contents are degraded by lysosomal hydrolases and released for reutilization
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double-membrane vesicles called phagophore, which sequester targeted cellular compo-
nents such as proteins or organelles to form autophagosome. The autophagosome then 
fuses with lysosomes for degradation.

Autophagy comprises a series of well-coordinated steps that culminate in the deg-
radation of cellular components [28–34]. These steps can be summarized as follows 
(Fig. 2): (1) Initiation: autophagy is initiated by the activation of a protein complex called 
the ULK1/2 (Unc-51 like autophagy activating kinase 1/2) complex, which includes 
ULK1/2, ATG13, ATG101, and FIP200. This complex senses nutrient and energy sta-
tus and regulates autophagosome formation. [32–34]. (2) Phagophore nucleation: this 
step involves the formation of a phagophore, an isolation membrane that eventually 
becomes the autophagosome. The process requires the activation of the class III phos-
phatidylinositol 3-kinase complex (PI3KC3), which includes Beclin-1 and VPS34 [10, 
35]. The PI3KC3 complex catalyzes the formation of phosphatidylinositol 3-phosphate 
(PtdIns3P), a critical step contributing to phagophore nucleation [36, 37]. (3) Vesicle 
elongation: autophagosome membrane elongation and closure is facilitated by the con-
jugation of ATG5-ATG12 and LC3 (microtubule-associated protein 1A/1B-light chain 3) 
proteins [10, 38, 39]. LC3 is cleaved and lipidated to form LC3-II, which is essential for 
autophagosome formation [39, 40]. Autophagy receptors, such as p62/SQSTM1, recog-
nize and bind to cargo destined for degradation, targeting it to autophagosomes [41, 42]. 
(4) Docking, fusion, and (5) degradation: as the autophagosome matures, it eventually 
fuses with a lysosome, forming an autolysosome. Within the autolysosome, lysosomal 

Fig. 2  The mechanisms by which autophagy modulation affects chemosensitivity are multifaceted and 
involve multiple signaling pathways. The PI3K/Akt/mTOR pathway suppresses autophagy, while PTEN 
activation, as well as CaMKKβ, ATM or LKB1-mediated AMPK activation, can promote autophagy by activating 
the ULK1/2 complex or deactivating mTOR. Autophagy is also induced by Src/STAT3 signaling pathway 
through HO-1 activation and the ERK/JNK signaling pathway activated by HMGB1. Additionally, ROS 
stimulates autophagy by inhibiting JAK2/STAT3 and p38/mTOR pathways, while the IL-6/STAT3 pathway 
activates ERK and induces autophagy by repressing ERS. These signaling pathways further regulate the 
sensitivity of tumor cells to chemotherapy through the activation or hyperactivation of autophagy
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proteases degrade the autophagic cargo, which then becomes available for cellular reuse 
[28].

Autophagy in chemoresistance

Autophagy plays a dual role in chemoresistance, exhibiting both pro-resistance and 
pro-sensitivity effects. On one hand, autophagy can promote cancer cell survival under 
stress, enhancing resistance to chemotherapy. Inhibition of autophagy can sensitize can-
cer cells to anti-cancer agents. Conversely, excessive autophagy can induce cytotoxicity, 
augmenting chemotherapy effectiveness against drug-resistant tumors [11]. This dual-
ity makes autophagy a double-edged sword in cancer chemoresistance (as depicted in 
Fig. 3), modulated by various signaling pathways discussed below.

The PI3K/AKT/mTOR pathway negatively regulates autophagy by inhibiting the 
ULK1/2 complex [43, 44]. PTEN suppresses PI3K, while mTOR downstream effector 
P70S6K inactivates autophagy [43, 44]. Dysregulation of this pathway affects drug effi-
cacy. Inhibition of PI3K/AKT/mTOR induces cell apoptosis and enhances doxorubicin 
(DOX) efficacy in breast cancer (BC) [45]. Conversely, PTEN activation contributes to 
autophagy-mediated DOX chemoresistance in BC [46]. Downregulation of AKT/mTOR 
promotes cisplatin (DDP) resistance in cervical cancer (CC) [47].

AMPK, an energy sensor, stimulates autophagy by phosphorylating ULK1/2 and inhib-
iting mTORC1 through Raptor phosphorylation [48]. AMPK impacts cancer cell chemo-
sensitivity. Upregulated ATM and AMPK/ULK1 pathway induce autophagy, reducing 
temozolomide (TMZ) cytotoxicity in glioma [49]. CaMKKβ-mediated AMPKα/mTOR 

Fig. 3  The regulation of autophagy to affect radiosensitivity involves a complex network of signaling 
pathway. Ionizing radiation (IR) and c-Jun inhibition activate the PI3K/Akt/mTOR pathway and inhibit 
autophagy, while PTEN, LKB1, and MEK/ERK mediated AMPK activation induces autophagy by blocking 
PI3K and mTOR activation. IR inhibits Wnt signaling and enhances autophagy through p62 disinhibition. 
ROS mediated signaling pathways (such as Nrf2/CaMKIIα, ERS, and NF-κB) can either facilitate or repress 
autophagy. IR-induced DNA damage triggers autophagy via the activation of ATM-related pathways. 
The modulation of autophagy by these signaling pathways further contributes to the enhancement or 
attenuation of resistance in cancer radiotherapy
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activation promotes autophagy, enhancing adriamycin (ADR) resistance in BC [50]. 
Intensified autophagy via LKB1/AMPK reverses docetaxel (DTX) resistance in prostate 
cancer (PC) [51]. In TMZ-resistant glioblastoma multiforme (GBM), autophagy sensi-
tizes TMZ treatment by inhibiting the AKT/AMPK/mTOR pathway [52].

STAT3 signaling regulates autophagy bidirectionally depending on cellular location 
[53]. Dysfunctional autophagy via STAT3 signaling affects drug efficacy. Src/STAT3/
HO-1 pathway stimulation in BC promotes cytoprotective autophagy, reducing DOX 
efficacy [54]. Conversely, ROS-mediated repression of JAK2/STAT3 activates autophagy, 
decreasing DDP tolerance in ovarian carcinoma (OC) [55]. Activated IL-6/STAT3/ERK 
pathways impair autophagy, leading to DDP resistance in OC [56]. Various signals like 
HMGB1/JNK, HMGB1/RAGE/ERK, and Nrf2/ATGs activate pro-survival autophagy, 
causing drug resistance [57–59]. Activation of p38/mTOR inhibits pro-death autophagy, 
inducing DDP tolerance in tongue squamous cell carcinoma [60].

Autophagy in cancer radioresistance

Autophagy has a complex role in the response of cancer cells to radiation-induced stress, 
similar to its role in chemoresistance. While most studies suggest that autophagy induc-
tion can increase radioresistance, some experiments indicate that enhancing autophagy 
activity can restore radiosensitization. Various signaling pathways modulated by ioniz-
ing radiation (IR) can further influence therapy efficacy by regulating autophagy (Fig. 4).

Fig. 4  Biogenesis and functions of circRNAs. (1) CircRNAs are primarily generated by back-splicing of 
pre-mRNA in the nucleus. Long flanking introns complementary sequences (such as inverted repeat 
elements Alu pairs) and trans acting RNA binding proteins (RBPs) participate in back-splicing to form the 
circular structures. CircRNAs can also be produced by lariat-intron intermediate. The cyclization of lariat is 
driven by GU-rich element at the upstream splicing site and C-rich element near the downstream branching 
point, or AG-GU motifs at both ends. In addition, circRNAs can be generated during the process of pre-tRNA 
sequence splicing to maturation. Furthermore, a new class of circRNAs can be formed by the cyclization of 
two intron-containing fragments (ICFs), with GT-AG splicing signals on both sides. (2) There are five types of 
circRNAs, including (a) EIcircRNA, (b) EcircRNA, (c) CiRNA, (d) TricRNAs and (e) Intergenic circRNAs. (3) It has 
been reported that circRNAs possess a variety of regulatory functions, such as (A) protein scaffolding, (B) 
miRNA sponging, (C) regulation of parental gene, (D) protein sponging, (E) protein translation and (F) protein 
recruitment
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The PI3K/AKT/mTOR pathway plays a crucial role in IR-mediated autophagy regula-
tion [61–63]. Activation of this pathway, when inhibited by c-Jun, restrains protective 
autophagy, enhancing X-ray-induced cytotoxicity in nasopharynx cancer (NPC) [61]. 
Conversely, mTOR activation can facilitate autophagic cell death, increasing γ-ray cyto-
toxicity in EGFR mutant non-small cell lung cancer (NSCLC) [62]. Inactivation of the 
AKT/p70S6K pathway releases autophagy repression, promoting γ-radiation sensitivity 
in malignant glioma cells [63].

HIF-1α signaling, induced by IR-related hypoxia stress, influences autophagy and con-
tributes to cancer radioresistance [64, 65]. For instance, HIF-1α activates c-Jun/Beclin1 
signaling in lung cancer cells, initiating pro-survival autophagy and enhancing radiore-
sistance [64]. LMP1 activates ERK/HIF-1α signaling, indirectly triggering autophagy and 
rendering nasopharynx cancer (NPC) cells insensitive to X-rays [65].

The Wnt-autophagy axis and the AMPK pathway also affect cancer IR therapy sen-
sitivity [66–70]. Fractionated IR activates the Wnt/β-catenin/GSK3β/P62 pathway, pro-
moting autophagic activity and enhancing radioresistance in glioblastoma (GBM) [67]. 
Upregulation of the LKB1/AMPK pathway by IR induces cytoprotective autophagy, con-
tributing to radioresistance in esophageal squamous cell carcinoma (ESCC) [69, 70].

Several other signaling pathways, including Nrf2/CaMKIIα, ATM/JNK/AMBRA1, 
ROS/ERS, NF-κB, and MEK/ERK, also influence radiotherapy sensitivity by modulat-
ing autophagy activity [71–75]. In summary, autophagy’s role in cancer radioresistance 
is multifaceted, with context-dependent effects. Understanding how different signaling 
pathways intersect with autophagy in response to radiation can provide insights into 
strategies for enhancing the effectiveness of radiation therapy.

CircRNAs‑mediated therapeutic resistance
The above content suggests that autophagy is a key cellular event, which not only par-
ticipates in normal biological processes but also plays an important role in the treat-
ment response of cancer cells. In recent years, studies have shown that circRNA can 
regulate different stages of autophagy through various mechanisms, thereby affecting 
the response of cancer cells to therapy. In addition to regulating autophagy, circRNA 
can also influence cancer cell treatment resistance through several other mechanisms. 
For example, circRNAs can regulate the expression levels of drug transport proteins, 
thereby altering the accumulation of drugs within cells [76, 77]. Additionally, circRNAs 
can regulate the apoptosis process of cancer cells [78–81], affect the degree of epithelial-
mesenchymal transition in cancer cells [82–85], modulate glycolytic metabolism [86–
88], regulate factors related to cancer stem cell properties [89–91], participate in tumor 
angiogenesis [92–94], regulate cell cycle progression [95, 96], influence DNA damage 
repair [97–100], and regulate the tumor microenvironment [101]. In summary, circRNA 
plays an important role in cancer therapeutic resistance through multiple mechanisms, 
as depicted in Fig. 5.

Regulation of drug transporters

Drug efflux transporters such as P-glycoprotein (P-gp), breast cancer resistance protein 
(BCRP), and multidrug resistance proteins (MRPs) play an important role in the devel-
opment of therapeutic resistance in cancer. By pumping drugs out of cancer cells, these 
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transporters decrease the intracellular accumulation of chemotherapy agents, reducing 
their efficacy. Certain circRNAs have been shown to regulate the expression of these 
efflux transporters, thereby modulating drug resistance. For instance, hsa_circ_103801 
has been shown to increase cisplatin resistance in osteosarcoma cells by regulating 
MRP1 and P-gp [76]. Addtionally, hsa_circ_0006404 and hsa_circ_0000735 modulate 
docetaxel resistance in ovarian cancer cells through P-gp regulation [77]. Upregulation 
of transporters mediated by circRNAs can elevate drug efflux and contribute to resist-
ance to chemotherapy treatments.

Influence on apoptosis process

In addition to regulating drug transporters, circRNAs can also affect therapeu-
tic resistance by modulating apoptosis, a key process in determining treatment 
responses. Apoptosis serves both pro-survival and pro-death roles in cancer. Some 
studies have shown circRNAs can influence apoptosis and thereby therapeutic 

Fig. 5  Aberrant expression of circRNAs is associated with cancer therapy resistance. Dysregulated circRNAs 
can regulate drug transporters (e.g., hsa_circ_103801 and hsa_circ_0000735), EMT (e.g., circESRP1 and 
circVRK1), TME (e.g., circITGB6 and circ_0012381), angiogenesis (e.g., circ_0011058 and circHIPK2), glycolysis 
(e.g., circFOXO3 and circPITX1), autophagy (e.g., hsa_circ_0000234 and circBANP), CSCs (e.g., circCDR1 and hsa_
circRNA_102115), apoptosis (e.g., circLIFR and circFIP1L1), cell cycle arrest (e.g., circATL2 and circ_0067835), and 
DNA damage repair (e.g., circMTHFD1L and circACAP2). Upward-pointing red arrow ‘↑’ indicates upregulation, 
and downward-pointing green arrow ‘↓’ indicates downregulation
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sensitivity through different mechamisims. For example, circLIFR and circEXOC6B 
were found to enhance apoptosis in drug-resistant bladder and ovarian cancer cell 
lines respectively, by forming RNA–protein binary complex with MSH2 and targeting 
miR-376c-3p [78, 79], which increased the cells’ vulnerability to therapy. In contrast, 
other circRNAs like circFAT1 promote resistance to therapy by dampening apoptosis. 
Research found circFAT1 increased oxaliplatin resistance in breast cancer by spong-
ing miR-525-5p and inhibiting apoptosis [80]. Similarly, hsa_circ_0003998 was shown 
to foster chemoresistance in lung adenocarcinoma by upregulating anti-apoptotic 
genes through a ceRNA mechanism [81]. In summary, circRNAs play divergent roles 
in modulating apoptosis, thus influencing cancer treatment responses.

Influence on epithelial‑mesenchymal transition (EMT)

EMT is a process where epithelial cancer cells lose their cell–cell adhesion and gain 
migratory and invasive properties associated with mesenchymal cells. EMT pro-
motes cancer progression by enhancing cancer cell infiltration, migration and stem-
like phenotypes, thus conferring therapeutic resistance [82]. Studies have shown 
that circRNAs can modulate the EMT process, and thereby impact treatment sensi-
tivity. For example, circ_0092367 and circESRP1 inhibited EMT and increased che-
mosensitivity  by regulating miR-1206 and miR-93-5p [82, 83]. However, circCRIM1 
and circ_0003998 were found to promote  EMT and resist docetaxel and  doxoru-
bicin treatment by acting as ceRNAs [84, 85].

Modulation of glycolytic metabolism

Cellular glycolysis is crucial for cancer progression and metabolism reprogramming. 
Glycolysis converts glucose into pyruvate to generate energy and biosynthetic interme-
diates to support rapid cell growth and proliferation [87]. Studies have demonstrated 
that circFOXO3 promotes glycolysis and enhances cisplatin sensitivity in NSCLC cells by 
regulating the miR-543/Foxo3 axis [86]. Conversely, exosomal hsa_circ_0005963 targets 
miR-122 to up-regulate PKM2 in CRC cells, thereby promoting glycolysis and conferring 
oxaliplatin resistance [87]. Additionally, in DTX-resistant PC cells, EIF4A3-mediated 
circARHGAP29 overexpression heightens aerobic glycolysis, enhancing resistance [88].

Regulating cancer stem cells (CSCs)

CSCs are a small subset of cells that have self-renewal and tumor initiating abilities. 
They are thought to be responsible for tumor initiation, metastasis and resistance to 
therapy. CircRNAs have been shown to influence CSC properties and the stem cell-
like phenotype, which is associated with therapy resistance. CircCDR1, expressed in 
NSCLC cells with DDP resistance, promotes HOXA9 levels by competitively binding 
miR-641, thereby enhancing stem-like properties [89]. Similarly, circ_001680 in CRC 
interacts with miR-340 to up-regulate BMI1 in NPC cells, inducing stemness and 
irinotecan tolerance [90]. Moreover, circFAM73A in GC regulates the miR-490-3p/
HMGA2 axis, promoting stemness and DDP resistance [91].
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Involvement in angiogenesis

Angiogenesis is the process of formation of new blood vessels. Rapid proliferation 
of tumors depends on sufficient blood supply from new vessel formation. Increased 
angiogenesis is associated with advanced diseases, metastasis and poor progno-
sis [92]. Studies found circRNAs modulated angiogenesis and influenced resistance. 
CircHIPK2 in NSCLC augments VEGFA and miR-1249-3p binding, thereby promot-
ing angiogenesis and DDP resistance [92]. Conversely, circ_0010235 in PTX-resistant 
NSCLC suppresses angiogenesis via the miR-512-5p/FAM83F axis [93]. Additionally, 
circ_0026123 in DDP-resistant OC promotes RAB1A by suppressing miR-543, con-
tributing to angiogenesis [94].

Participation in cell cycle progression

Deregulated cell cycle progression allows uncontrolled growth of cancer cells. Cir-
cRNAs are involved in modulating the cell cycle, which influences therapy response. 
CircATL2 in OC induces cell cycle arrest and initiates PTX resistance via the miR-
506-3p/NFIB axis [95]. Conversely, knockdown of hsa_circ_0000277 in ESCC 
increases the G0/G1 phase by regulating the miR‐873-5p/SOX4 axis, promoting DDP 
resistance [96].

Impact on DNA damage repair (DDR)

DDR pathways are crucial for maintaining genomic stability. Elevated DDR is linked to 
resistance by allowing cancer cells to repair DNA damage caused by therapy [97]. Cir-
cRNAs were shown to regulate DDR genes and modulate resistance. CircMTHFD1L 
in pancreatic cancer up-regulates RPN6 by acting as an miR-615-3p sponge, promot-
ing GEM resistance [97]. Furthermore, exosomal circWDR62 from glioma cells induces 
MGMT expression through miR-132, thereby weakening TMZ efficacy [98].

Role in tumor microenvironment (TME)

TME refers to cellular and non-cellular components that surround and influence tumor 
cells. It includes fibroblasts, immune cells, blood vessels, extracellular matrix etc. The 
complex network of tumor-stromal cell interactions within the TME contributes signifi-
cantly to therapeutic resistance [101]. Studies illustrated that circRNAs shape the TME 
by regulating components like tumor-associated macrophages. CircITGB6 in OC facili-
tates IGF2BP2-mediated FGF9 expression and polarization of tumor-associated mac-
rophages towards the M2 phenotype, conferring DDP resistance [101].

Regulation of autophagy process

Autophagy acts as a double-edged sword in cancer by promoting both cell survival 
and death [11]. Dysregulated autophagy confers therapeutic resistance in cancers. 
Certain circRNAs were found to modulate autophagy and influence resistance by 
regulating autophagy-related genes or signaling pathways, such as hsa_circ_0000234 
and circ_0006528 can influence cancer chemoresistance by regulating the autophagy 
process, which will be discussed in Sect. "CircRNAs-mediated autophagy modulation 
and their impact on cancer therapeutic resistance".
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In summary, circRNAs exhibit multifaceted roles in treatment resistance, intricately 
sculpting drug transport, apoptosis, EMT, glycolysis, CSCs, angiogenesis, cell cycle, 
DDR, TME, and autophagy. Their dichotomous nature underscores the complexity of 
therapeutic resistance mechanisms, presenting promising avenues for targeted inter-
ventions [76–119].

CircRNAs‑mediated autophagy modulation and their impact on cancer 
therapeutic resistance
CircRNAs can control various proteins involved in autophagy, a crucial process in tumor 
development. (1) In the initial stage of autophagy, circRNAs influence the PI3K/AKT/
mTOR pathway, which regulates autophagy [43]. For instance, circRHOBTB3 and circ-
ST3GAL6 impact this pathway in pancreatic and gastric cancer cells, respectively, lead-
ing to pro-survival autophagy [120, 121]. CircTMEM87A and circ_0005774 indirectly 
control autophagy by affecting proteins like ULK1, promoting autophagy and aiding 
cancer cell growth [122, 123]. (2) During the phagophore nucleation stage, certain cir-
cRNAs influence molecules like ATG14 and Beclin1, initiating autophagy. Circ_0058058 
and circCCDC66 affect these molecules in multiple myeloma and colorectal cancer 
cells, respectively, promoting cancer cell behavior [124, 125]. Hsa_circ_0006470 triggers 
autophagy by regulating Beclin1 in gastric cancer [126]. (3) In the membrane expansion 
phase, circRNAs impact the ATG5-ATG12-ATG16L complex and LC3 conjugation sys-
tem, crucial for autophagosome elongation. CircRNAs like hsa_circ_0001747, circMDK, 
and circFOXM1 influence these processes in various cancers, leading to autophagy acti-
vation and cancer progression [127–129]. Hsa_circ_0006948 induces autophagy in oste-
osarcoma cells by affecting ATG7, promoting cancer development [130]. (4) In the late 
maturation and fusion stage, circRNAs indirectly control autophagy-related proteins like 
STX17 and RAB10. For instance, circ_0000034 and hsa_circ_0001658 impact retinoblas-
toma and gastric cancer cells, respectively, enhancing autophagy and cancer cell behav-
ior [131, 132] (as shown in Fig. 6).

Besides its crucial role in cancer development, autophagy assumes a dual role in 
therapy—it can either sensitize cancer cells to treatment-induced death or reforce their 
resistance, leading to therapeutic failure and disease relapse. This duality underscores 
the need for precise regulation of autophagy to enhance treatment efficacy. Notably, 
recent research has unearthed the regulatory prowess of non-coding RNAs, particularly 
circRNAs, in modulating autophagic pathways, influencing various stages of autophagy 
in diverse types of cancer (as illustrated in Fig. 7 and summarized in Table 1).

Glioblastoma multiforme (GBM)

GBM, one of the most aggressive and malignant forms of brain cancer, poses a signifi-
cant challenge in cancer treatment. TMZ is a standard chemotherapy drug used to treat 
GBM. However, resistance to TMZ often develops, leading to treatment failure. In this 
context, hsa_circ_0072309 has emerged as a crucial regulator in GBM and other cancers 
[133–136]. Its down-regulation in GBM patients has been associated with poor progno-
sis. Notably, hsa_circ_0072309 sensitizes GBM cells to TMZ by targeting miR-100/p53 
axis and activating autophagy-induced apoptosis, providing a potential avenue to over-
come TMZ resistance in GBM treatment [137].
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Colorectal cancer (CRC)

CRC is a prevalent malignancy with diverse molecular subtypes. Resistance to X-ray 
irradiation poses a significant challenge in CRC therapy. BANP protein, a human 
homolog of matrix attachment region (MAR) binding protein scaffold/matrix 
attachment region binding protein 1 (SMAR1), plays a crucial role in transcriptional 
suppression of multiple oncogenes [138]. CircBANP (hsa_circ_0003098) has been 
identified as a key player in CRC, particularly in radiation resistance [139, 140]. Its 
up-regulation in CRC patients resistant to X-ray irradiation highlights its role in 
promoting autophagy. Silencing circBANP has been found to modulate miR-338-3p/
LC3B/p62 axis and deactivate autophagy, thereby enhancing the efficacy of X-ray-
induced tumor suppression in CRC [20].

Fig. 6  CircRNAs regulate autophagy and affect cancer development. The autophagy process can be 
modulated by circRNAs at various stages, leading to either suppression or promotion of cancer. This 
schematic diagram illustrates some representative circRNAs, including circRHOBTB3, circCCDC66, circFOXM1, 
circ_0000034 and others, that impact cancer progression by regulating autophagy
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Gastric cancer (GC)

Gastric Cancer (GC) is characterized by its aggressive nature and resistance to vari-
ous chemotherapeutic agents. Resistance to drugs like 5-Fluorouracil (5-FU) is a com-
mon challenge in GC treatment. CircCPM, CircCUL2, CircPVT1, and CircMCTP2 have 
emerged as key regulators influencing autophagy and chemoresistance in GC.

CircCPM is highly expressed in 5-FU-resistant GC patients, indicating poor survival 
outcomes. It acts as a sponge for miR-21-3p, enhancing the expression of AMPK subunit 
alpha 2 (PRKAA2) and promoting autophagy. This reduced apoptosis in GC cells, con-
tributing to 5-FU tolerance [19]. In addition, dysregulation of its parental gene CPM has 
been implicated in many types of cancer [141].

CircCUL2 (hsa_circ_0000234) acted as a tumor-suppressive and regulator to sensitize 
tumor cells to chemotherapeutic drugs  [142–144],  is down-regulated in GC patients’ 
serum and tissues, and it is positively correlated with overall survival. When combined 
with miR-142-3p, it upregulate ROCK2, reducing autophagy in GC cells and increasing 
sensitivity to DDP [145].

CircPVT1, originating from the plasmacytoma variant translocation 1(PVT1) gene, 
is present in exosomes from DDP-resistant GC cells. It competitively binds with miR-
30a-5p, increasing yes-associated protein 1 (YAP1) levels. This upregulates LC3B and 
P-gp, promoting autophagy, reducing apoptosis, and inhibiting DDP’s efficacy [146, 147].

There are two types of CircMCTP2 with distinct functions. One type, circMCTP2 
(hsa_circ_0000658), facilitates bladder carcinoma progression by regulating the 

Fig. 7  Dysregulated circRNAs are involved in autophagy-mediated resistance to chemotherapy and 
radiotherapy in cancer. The majority of circRNAs act as miRNA sponges, which sequester miRNAs and prevent 
them from regulating their downstream mRNA targets, thereby affecting the initiation of autophagy. Only a 
few circRNAs directly interact with proteins to modulate autophagy
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miR-498/murine double minute-2 (MDM2) axis [148]. The other type, circMCTP2 
(hsa_circ_0000657), found at low levels in DDP-resistant GC cells, inhibits miR-
99a-5p, promoting myotubularin-related protein 3 (MTMR3) expression. This 
downregulates LC3-II, weakens autophagy, and enhances DDP sensitivity [149].

These circRNAs, through intricate mechanisms, influence autophagy levels, ena-
bling GC cells to survive and resist chemotherapy. Understanding their roles offers 
potential avenues for therapeutic interventions in GC treatment.

Table 1  The roles of autophagy associated-circRNAs in chemo- and radio-therapy of malignant 
tumors

Cancer 
types

CircRNAs CircBase ID Host 
gene

Sponge 
targets

Downstream 
genes/
pathway

Impacts on 
autophagy

Functions Refs.

GBM circLIFR↓ hsa_
circ_0072309

LIFR miR-100 p53↑ Promotion TMZ sensi-
tivity

[137]

CRC​ circBANP↑ hsa_
circ_0003098

BANP miR-
338-3p

/ Promotion Radioresist-
ance

[20]

GC circCPM↑ hsa_
circ_0027497

CPM miR-21-3p PRKAA2↑ Promotion 5-FU resist-
ance

[19]

circCUL2↓ hsa_
circ_0000234

CUL2 miR-
142-3p

ROCK2↑ Inhibition DDP sensi-
tivity

[145]

circPVT1↑ / PVT1 miR-
30a-5p

YAP1↑ Promotion DDP resist-
ance

[147]

circMCTP2↓ hsa_
circ_0000657

MCTP2 miR-
99a-5p

MTMR3↑ Inhibition DDP sensi-
tivity

[149]

RC circCCNB2↑ hsa_
circ_0035483

CCNB2 miR-335 cyclin B1↑ Promotion GEM resist-
ance

[150]

TC circEIF6↑ hsa_
circ_0060060

EIF6 miR-
144-3p

TGF-α↑ Promotion DDP resist-
ance

[154]

BC circABCB10↑ hsa_
circ_0008717

ABCB10 let-7a-5p DUSP7↑ Promotion PTX resist-
ance

[155]

circ_0006528↑ hsa_
circ_0006528

PRELID2 miR-1299 CDK8↑ Promotion PTX resist-
ance

[156]

circAKT3↑ hsa_
circ_0000199

AKT3 miR-613/
miR-206

PI3K/AKT/mTOR 
pathway↑

Inhibition ADR/DDP/
PTX/GEM 
resistance

[157]

circINTS4↑ hsa_
circ_0002476

INTS4 miR-
129-5p

POM121↑ Promotion ADR resist-
ance

[158]

NSCLC circPABPC1↑ hsa_
circ_0085131

PABPC1 miR-
654-5p

ATG7↑ Promotion DDP resist-
ance

[170]

cir-
cRNA_100565↑

hsa_
circ_0017956

MLLT10 miR-
337-3p

DAM28↑ Promotion DDP resist-
ance

[172]

CC circRNF121↑ hsa_
circ_0023404

RNF121 miR-5047 / Inhibition DDP resist-
ance

[176]

circMTO1↑ hsa_
circ_0007874

MTO1 miR-6893 / Promotion DDP resist-
ance

[180]

Laryn-
gocarci-
noma

circPGAM1↑ / PGAM1 miR-376a ATG2A↑ Promotion DDP resist-
ance

[182]

circPARD3↑ circ_00043 PARD3 miR-
145-5p

PRKCI↑ Inhibition DDP resist-
ance

[184]

OSCC circPKD2↓ hsa_
circ_0070401

PKD2 miR‐
204‐3p

ATG13↑ Promotion DDP sensi-
tivity

[186]

PC circCCNB2↑ hsa_
circ_0035483

CCNB2 miR-
30b-5p

KIF18A↑ Promotion Radioresist-
ance

[191]
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Renal cancer (RC)

RC is a malignancy originating in the kidneys and is a significant public health concern 
globally. Gemcitabine (GEM) is commonly employed in chemotherapy for RC. However, 
the development of resistance to GEM presents a major challenge in the treatment of 
this cancer. Elevated levels of hsa_circ_0035483 have been observed in human RC tis-
sues. In RC cells treated with GEM, hsa_circ_0035483 induces the expression of cyclin 
B1 by suppressing miR-335. This, in turn, increases the levels of LC3B and inhibits cas-
pase3 expression, thereby activating autophagy and promoting resistance to GEM [150].

Thyroid carcinoma (TC)

TC arises from the thyroid gland and is a prevalent cancer type worldwide. Cisplatin 
(DDP) is commonly used in TC chemotherapy. However, resistance to DDP poses a 
significant challenge in the effective treatment of TC. CircEIF6 (hsa_circ_0060060), a 
circRNA spliced from the eukaryotic initiation factor 6 (eIF6) gene, is up-regulated in 
DDP-treated TC cells. EIF6 plays a key role in the biosynthesis and function of ribo-
somes, and dysregulation of eIF6 is closely associated with the formation and develop-
ment of cancers [151–153]. In DDP-treated TC cells, circEIF6 suppresses miR-144-3p, 
leading to increased expression of transforming growth factor-alpha (TGF-α), elevated 
LC3B levels, promotion of autophagy, and consequent DDP insensitivity [154].

Breast cancer (BC)

BC is a heterogeneous disease with diverse molecular subtypes. Taxanes, such as Pacli-
taxel (PTX), are widely used in BC chemotherapy. However, resistance to PTX signifi-
cantly hampers treatment outcomes. CircABCB10, circ_0006528, hsa_circ_0000199, and 
circINTS4 have been identified as critical circRNAs involved in autophagy regulation 
and chemoresistance in BC. Their roles in activating autophagy pathways shed light on 
the intricate mechanisms of drug resistance in BC, providing potential avenues for tar-
geted therapies [155–158].

CircABCB10 (hsa_circ_0008717) has been implicated as an oncogene and a potential 
diagnostic and therapeutic target in various cancers [159]. In PTX-resistant BC tissues 
and cells, up-regulated circABCB10, derived from its parental gene ABCB10, interacts 
with let-7a-5p. This interaction increases the level of dual specificity phosphatase 7 
(DUSP7), enhances LC3B-mediated autophagy, and leads to PTX resistance [155].

Circ_0006528 is involved in BC progression and ADR tolerance through distinct 
mechanisms [160–162]. In PTX-intolerant BC patients, elevated circ_0006528 interacts 
with miR-1299, promoting CDK8 enrichment, indirectly increasing P-gp and Beclin1 
expression. This activation of autophagy induces PTX resistance in BC cell lines [156].

Hsa_circ_0000199, derived from the AKT3 gene, confers resistance to various chemi-
cals, including ADR, DDP, PTX, and GEM in triple-negative breast cancer (TNBC) 
patients [157, 163]. It interacts with miR-613/miR-206, activating the PI3K/AKT/mTOR 
signaling pathway, dampening Beclin1 and LC3-II expression, attenuating autophagy, 
and enhancing chemical tolerance.

CircINTS4 (hsa_circ_0002476) accelerates bladder cancer cell malignancy through 
the miR-146b/CARMA3 axis modulation [164]. Additionally, circINTS4 overexpres-
sion was detected in TNBC patients with ADR resistance. Acting as a molecular sponge, 
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circINTS4 sequesters miR-129-5p, increasing POM121 expression. This indirect up-reg-
ulation of P-gp and Beclin1 triggers autophagy, inducing ADR tolerance [158].

Non‑small cell lung cancer (NSCLC)

NSCLC is the most common type of lung cancer. Platinum-based drugs, such as DDP, 
are frequently used in NSCLC chemotherapy. However, resistance to DDP poses a sig-
nificant challenge in NSCLC treatment. Hsa_circ_0085131 and circRNA_100565 have 
been identified as key circRNAs in DDP resistance in NSCLC. Their roles in inducing 
autophagy shed light on the molecular mechanisms underlying DDP resistance, offering 
potential targets for overcoming resistance in NSCLC therapy [165–167].

Hsa_circ_0085131, derived from the polyadenylate-binding protein cytoplasmic 1 
(PABPC1) gene transcript, is up-regulated in recurrent NSCLC patients [165, 169–172]. 
It acts as a sponge for miR-654-5p, regulating ATG7 and subsequent LC3-II expression 
[165]. This leads to autophagy induction, inhibits cell apoptosis, and ultimately contrib-
utes to DDP resistance.

CircRNA_100565 (hsa_circ_00179561), derived from back-splicing of the 16th to 20th 
exons of the MLLT10 gene, increases the expression of high mobility group AT-hook 2 
(HMGA2) by inhibiting miR-506-3p. This exacerbates the malignant behavior of NSCLC 
cells [166]. In DDP-resistant NSCLC patients, circRNA_100565 is highly expressed, 
leading to elevated ADAM metallopeptidase domain 28 (ADAM28) levels through 
interaction with miR-337-3p. ADAM28 reinforces LC3B and Beclin1 levels, enhancing 
autophagy, suppressing apoptosis, and promoting cell proliferation and DDP insensitiv-
ity in NSCLC cells [167].

Cervical cancer (CC)

CC originates in the cells lining the cervix. Resistance to DDP is a common issue in CC 
treatment. Hsa_circ_0023404 and circMTO1 have been identified as crucial players in 
DDP resistance in CC. Their roles in modulating autophagy provide valuable insights 
into the mechanisms underlying chemoresistance in CC, paving the way for targeted 
interventions [173–177].

Hsa_circ_0023404, originating from ring finger protein 121 (RNF121), acts as an onco-
gene in various cancers, including CRC, CC, and NSCLC [173, 178, 179]. Guo et  al. 
demonstrated that increased hsa_circ_0023404 expression in CC cells reduced Bec-
lin1, increased p62 via miR-5047 sponge effect. This inhibition of autophagy decreased 
apoptosis and aggravated DDP resistance [174]. Additionally, hsa_circ_0023404 reduced 
NSCLC sensitivity to DDP by activating the miR-646/SOX4 axis [180].

CircMTO1 (hsa_circ_0007874) is derived from circularized exons 2–3 of mitochon-
drial tRNA translation optimization 1 (MTO1) gene and plays a dual role as a carcino-
genic driver or tumor suppressor in cancer [175, 176]. Its up-regulation in CC patients 
indirectly triggers autophagy by sponging miR-6893, inhibiting apoptosis, and leading to 
DDP resistance [177].

Laryngocarcinoma

Laryngocarcinoma, also known as laryngeal cancer, originates in the larynx. Resist-
ance to DDP is also a significant concern in laryngocarcinoma treatment. CircPGAM1 
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and circPARD3 have been identified as key circRNAs influencing autophagy and DDP 
resistance in laryngocarcinoma. Understanding their roles in autophagy regulation 
provides crucial information for developing targeted therapies to overcome DDP 
resistance in laryngocarcinoma patients [181–183].

CircPGAM1, derived from phosphoglycerate mutase 1 (PGAM1) genome DNA, 
drives the malignant progression of epithelial OC cells via the miR-542-3p/CDC5L/
PEAK1 pathway [184]. In laryngocarcinoma patients, increased circPGAM1 expres-
sion correlates with advanced clinical stages and reduced overall survival rates. Act-
ing as a miRNA sponge, circPGAM1 targets miR-376a, enhancing ATG2A expression 
in laryngocarcinoma cells. This promotes autophagy, inhibits apoptosis, and ulti-
mately leads to DDP tolerance [181].

CircPARD3, formed by circularization of exon 16–22 of the human PARD3 gene, 
plays a dual role in cancer development and metastasis [182]. In laryngeal squamous 
cell carcinoma patients, elevated circPARD3 levels inhibit autophagy and are associ-
ated with malignant progression and poor prognosis. CircPARD3 acts as a molecular 
sponge for miR-145-5p, enhancing protein kinase C-iota (PRKCI) expression. PRKCI 
stimulates the AKT/mTOR pathway, reducing autophagy and causing DDP resistance 
in laryngeal squamous cell carcinoma [183].

Oral squamous cell carcinoma (OSCC)

OSCC is a prevalent type of oral cancer. Resistance to DDP limits its efficacy in OSCC 
treatment. CircPKD2 (hsa_circ_0070401), a crucial circRNA derived from the poly-
cystic kidney disease 2 (PKD2) gene, plays a significant role in influencing autophagy 
and DDP resistance in OSCC. It regulates OSCC proliferation, invasion, and metas-
tasis by modulating the miR‐204‐3p/adenomatous polyposis coli 2 (APC2) axis 
[185]. Recently, researchers found that increased circPKD2 levels sequester miR-646, 
enhancing ATG13 expression. This augmentation of autophagy alleviates DDP resist-
ance in OSCC cells, indicating a promising strategy for overcoming drug resistance in 
OSCC treatment [186]. Unraveling its role in autophagy regulation provides valuable 
insights into the mechanisms of DDP resistance, offering potential avenues for thera-
peutic interventions.

Prostate cancer (PC)

PC, originating in the prostate gland, is a prevalent cancer in men. Resistance to X-ray 
therapy poses a significant challenge in its treatment. CircCCNB2, a key circRNA, 
has been identified for its role in promoting autophagy and X-ray resistance in PC. 
Cyclin B2 (CCNB2) serves as a diagnostic and prognostic marker in various human 
tumors, including HCC [187], rhabdomyosarcoma [188], TNBC [189], and low-grade 
glioma [190]. CircCCNB2, derived from CCNB2 genomic DNA, is up-regulated in PC 
patients resistant to radiotherapy. It absorbs miR-30b-5p, elevating KIF18A levels in 
PC cells. This elevation promotes LC3B and Beclin1 expression, enhancing autophagy 
activity and leading to X-ray resistance [191]. Understanding its role in autophagy 
modulation provides essential insights for overcoming X-ray resistance in PC therapy.
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Clinical implications and biomarker potential
The emerging understanding of circRNAs in modulating autophagy has profound 
clinical implications, particularly in the context of cancer therapeutic resistance. The 
complex roles of circRNAs in regulating autophagy pathways across diverse cancer 
types not only shed light on the underlying molecular mechanisms but also present 
promising avenues for clinical interventions and biomarker development.

Predictive biomarkers for therapeutic response

Identification of specific circRNAs associated with autophagy dysregulation provides 
an opportunity to develop predictive biomarkers for therapeutic response. CircR-
NAs such as hsa_circ_0072309 in glioblastoma [137] and circABCB10 in breast can-
cer [155] exhibit clear correlations with drug sensitivity, suggesting their potential as 
predictive markers for treatment outcomes. Monitoring the expression levels of these 
circRNAs could guide clinicians in tailoring therapies based on individual patient 
profiles, maximizing treatment efficacy.

Overcoming chemoresistance through targeted circRNA interventions

Targeting dysregulated circRNAs involved in autophagy presents a novel therapeutic 
approach. Designing small molecules, antisense oligonucleotides, or CRISPR/Cas9-
based strategies to modulate circRNA expression could help sensitize cancer cells to 
conventional treatments. For instance, silencing circBANP enhances the effects of 
X-ray irradiation in colorectal cancer [20], while inhibiting circINTS4 sensitizes tri-
ple-negative breast cancer cells to anthracyclines [158]. These targeted interventions 
have the potential to reverse chemoresistance and improve patient outcomes.

Monitoring treatment response and disease progression

Dynamic changes in circRNA expression patterns during treatment could serve as 
real-time indicators of treatment response and disease progression. Longitudinal 
monitoring of circRNA profiles, especially those linked to autophagy, might pro-
vide valuable insights into treatment efficacy. For example, studies have shown that 
circCPM enhances 5-FU resistance in gastric cancer by promoting autophagy flux 
[19], and circ_0006528 activates autophagy and increases paclitaxel resistance in 
breast cancer by interacting with miR-1299 [156]. Therefore, increased expression of 
autophagy-promoting circRNAs like circCPM and circ_0006528 could indicate treat-
ment resistance, prompting clinicians to consider alternative therapeutic strategies or 
combination therapies.

Non‑invasive liquid biopsy biomarkers

CircRNAs have shown stability in body fluids, making them ideal candidates for non-
invasive liquid biopsy biomarkers. Circulating circRNAs associated with autophagy 
dysregulation could be detected in blood, serum, or saliva samples. For example, stud-
ies have shown that exosomal hsa_circ_103801 and circWDR62 can be detected in 
serum and serve as non-invasive biomarkers for osteosarcoma/glioma diagnosis and 
prognosis prediction [76, 98]. Profiling these circRNAs in liquid biopsies might offer 
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a minimally invasive method for diagnosing cancer, predicting therapeutic responses, 
and monitoring disease recurrence or progression [192].

Personalized autophagy‑targeted therapies

Understanding the circRNA-mediated autophagy networks in individual patients could 
pave the way for personalized autophagy-targeted therapies. For example, elevated levels 
of circABCB10 and circ_0006528 in breast cancer patients may suggest that these tumors 
rely on autophagy activation for survival [155, 156]. By analyzing the specific circRNA 
signatures like circABCB10 and circ_0006528 in a patient’s tumor, clinicians can tailor 
treatments to modulate autophagy pathways effectively. This personalized approach 
holds the potential to enhance treatment responses to paclitaxel and mitigate resistance 
by blocking circABCB10/ let-7a-5p or circ_0006528/ miR-1299 axes, leading to more 
effective cancer therapies.

In conclusion, the emerging role of circRNAs in mediating autophagy in cancer ther-
apeutic resistance offers promising avenues for clinical applications. From predictive 
biomarkers and targeted interventions to non-invasive liquid biopsy markers and per-
sonalized therapies, circRNAs have the potential to revolutionize cancer treatment strat-
egies. Continued research and clinical trials focused on circRNA-mediated autophagy 
regulation are essential to translate these findings into meaningful advancements in can-
cer patient care.

Conclusions and perspectives
The burgeoning field of circRNA-mediated autophagy regulation in cancer therapeutic 
resistance has illuminated novel avenues for understanding the molecular intricacies 
of drug resistance and has spurred the development of innovative therapeutic strate-
gies. This review summarized the impact and potential mechanisms of circRNAs and 
autophagy in modulating the resistance of cancer cells to therapy, which provided evi-
dent that the complex interplay between circRNAs and autophagy pathways significantly 
impacts cancer treatment outcomes. The insights gained from studying circRNA-medi-
ated autophagy modulation provide a solid foundation for future research endeavors and 
therapeutic interventions.

While progress has been made, the complete landscape of circRNAs involved in 
autophagy regulation remains largely unexplored. Future research should focus on com-
prehensive profiling of circRNAs across diverse cancer types and stages to identify novel 
circRNAs and elucidate their roles in autophagy, unveiling new therapeutic targets and 
biomarkers for predicting treatment responses.

Targeting the unique back-splice sites of aberrant oncogenic circRNAs using anti-
sense oligonucleotides such as siRNA (small interfering RNA) and shRNA (short hairpin 
RNA), along with CRISPR/Cas13 technology, presents an opportunity to advance cancer 
treatment [193]. In addition, utilizing tRNA splicing and plasmids containing comple-
mentary sequences and specific RBP-binding motifs in the flanking introns to increase 
the levels of circRNAs with tumor suppressor functions show promise for enhancing 
their anti-tumor effects [20]. However, ensuring the specificity of circRNA-targeted 
therapies while minimizing off-target effects is a major challenge, highlighting the need 
for precise delivery systems that target cancer cells while sparing normal tissue.
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Given the conflicting roles of autophagy and circRNA in tumorigenesis, personal-
ized approaches tailored to the circRNA profile of individual patients are essentail. 
Furthermore, expanding our understanding of circRNA-mediated autophagy regula-
tion beyond the ceRNA mechanism to include other regulatory modes, such as the 
regulation of RNA modification or translation of new proteins, is crucial for uncover-
ing the precise role of circRNAs in the autophagy pathway [194].

Validating the clinical relevance of autophagy-related circRNAs through large-
scale clinical studies and rigorous validation of circRNA-based biomarkers in diverse 
patient populations is imperative for their widespread adoption in clinical settings. 
Moreover, integrating different omics data and employing new technologies such as 
whole-genome screening and single-cell sequencing will provide a more comprehen-
sive understanding of circRNA-mediated autophagy regulation and its impact on can-
cer treatment resistance.

In conclusion, the emerging field of circRNA-mediated autophagy presents exciting 
opportunities for cancer therapy. Addressing research gaps and overcoming associ-
ated challenges will pave the way for the development of targeted, personalized, and 
effective therapies, ultimately improving the outcomes and quality of life for cancer 
patients. Continued interdisciplinary research efforts, collaborative initiatives, and 
innovative technological advancements are critical to realize the full potential of cir-
cRNA-mediated autophagy regulation in cancer therapy.
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