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Abstract 

Background: Pulmonary hypertension (PH) is a progressive disease characterized 
by pulmonary vascular remodeling. Increasing evidence indicates that endothelial-to-
mesenchymal transition (EndMT) in pulmonary artery endothelial cells (PAECs) is a piv-
otal trigger initiating this remodeling. However, the regulatory mechanisms underlying 
EndMT in PH are still not fully understood.

Methods: Cytokine-induced hPAECs were assessed using RNA methylation quanti-
fication, qRT-PCR, and western blotting to determine the involvement of N6-methyl-
adenosine  (m6A) methylation in EndMT. Lentivirus-mediated silencing, overexpression, 
tube formation, and wound healing assays were utilized to investigate the function 
of METTL3 in EndMT. Endothelial-specific gene knockout, hemodynamic measurement, 
and immunostaining were performed to explore the roles of METTL3 in pulmonary 
vascular remodeling and PH. RNA-seq, RNA Immunoprecipitation-based qPCR, mRNA 
stability assay,  m6A mutation, and dual-luciferase assays were employed to elucidate 
the mechanisms of RNA methylation in EndMT.

Results: The global levels of  m6A and METTL3 expression were found to decrease 
in TNF-α- and TGF-β1-induced EndMT in human PAECs (hPAECs). METTL3 inhibition led 
to reduced endothelial markers (CD31 and VE-cadherin) and increased mesenchymal 
markers (SM22 and N-cadherin) as well as EndMT-related transcription factors (Snail, 
Zeb1, Zeb2, and Slug). The endothelial-specific knockout of Mettl3 promoted EndMT 
and exacerbated pulmonary vascular remodeling and hypoxia-induced PH (HPH) 
in mice. Mechanistically, METTL3-mediated  m6A modification of kruppel-like factor 2 
(KLF2) plays a crucial role in the EndMT process. KLF2 overexpression increased CD31 
and VE-cadherin levels while decreasing SM22, N-cadherin, and EndMT-related tran-
scription factors, thereby mitigating EndMT in PH. Mutations in the  m6A site of KLF2 
mRNA compromise KLF2 expression, subsequently diminishing its protective effect 
against EndMT. Furthermore, KLF2 modulates SM22 expression through direct binding 
to its promoter.
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Conclusions: Our findings unveil a novel METTL3/KLF2 pathway critical for protecting 
hPAECs against EndMT, highlighting a promising avenue for therapeutic investigation 
in PH.

Keywords: Pulmonary arterial hypertension, Transcription factor, Methylation, 
Epigenetics, Epithelial-mesenchymal transition

Introduction
Pulmonary hypertension (PH) is a severe pulmonary vascular disorder characterized 
by pulmonary vascular remodeling, which can lead to pulmonary artery stenosis and 
eventual right ventricle (RV) failure [1].

Emerging evidence indicates that endothelial-to-mesenchymal transition (EndMT), 
a process involving the transition of endothelial cells (ECs) from a cobblestone to a 
spindle-like phenotype, is critical in EC dysfunction and subsequent vascular remodeling 
[2, 3]. During EndMT, several zinc finger transcription factors, such as Snail, Slug, Zeb1, 
and Zeb2, are activated, serving as repressors or activators to orchestrate the decline of 
endothelial markers, such as CD31, VE-cadherin, and vWF, and the rise of mesenchymal 
markers, such as N-cadherin, SM22, and α-SMA [4]. Frid et  al. initially identified the 
involvement of TGF-β1 in inducing EndMT in ECs isolated from bovine pulmonary 
arteries [5]. Moreover, hypoxia has been shown to promote EndMT via upregulation 
of myocardin [6]. In monocrotaline pyrrole (MCTP)-induced experimental PH models, 
pulmonary vascular endothelial cells have been observed to transform toward EndMT, 
leading to neointimal formation [7]. Good et  al. further highlighted the significance 
of EndMT in PH by demonstrating an increased coexpression of vWF and α-SMA 
in the lung vessels of hypoxia/sugen-treated mice [8]. A multitude of mechanisms, 
including hypoxia [6], inflammation [9], aberrant BMPR2 signaling [10], and oxidative 
stress [11], have been implicated in the induction of EndMT. In addition, epigenetic 
modifications, such as DNA methylation of the eNOS promoter [12], P300-dependent 
histone acetylation [13], and the involvement of the long non-coding RNA ANRIL [14] 
and NORAD [15], are associated with EC dysfunction. Despite these advancements in 
understanding epigenetic regulation of EC behavior, knowledge regarding the role of 
RNA methylation in PH-associated EndMT remains nascent.

N6-methyladenosine  (m6A) is the most prominent RNA modification extensively 
investigated in recent studies [16–18]. The modulation of  m6A methylation 
predominantly involves three categories of effector proteins: METTL3, METTL14, and 
WTAP as writers; FTO and ALKBH5 as erasers; and YTHDF1/2/3 and YTHDC1/2 as 
readers [19–21]. Accumulating evidence suggests that RNA methylation plays a crucial 
role in PH progression. METTL14-mediated  m6A methylation leads to mRNA decay 
of Grb-2-related adaptor protein (GRAP), promoting pulmonary vascular resistance 
[22]. Likewise, YTHDF1 recognizes the  m6A mark on Foxm1 mRNA, facilitating 
pulmonary vascular changes and fibrosis [23]. In contrast, depletion of YTHDF1 
attenuates PH development by identifying  m6A on MAGED1 mRNA [24]. Moreover, 
RNA modifications are also essential in regulating endothelial dysfunction. Elevation 
of C-C motif chemokine receptor 10 (CCR10) decreases  m6A methylation, promoting 
endothelial injury [25]. Similarly, human cytomegalovirus accelerates endothelial 
apoptosis through METTL3 and YTHDF3-mediated  m6A modification [26]. Kong et al. 



Page 3 of 20Kang et al. Cellular & Molecular Biology Letters           (2024) 29:69  

recently identified that  m6A methylation on TRPC6 enhances hypoxia-mediated EndMT 
in rat PAECs through activating calcineurin/NFAT signaling [27]. Despite these insights, 
the specific role of  m6A in EndMT during PH is not fully understood.

In this study, we elucidate that the global methylation status and the  m6A RNA 
methyltransferase METTL3 are downregulated during EndMT in human pulmonary 
artery endothelial cells (hPAECs) exposed to TNF-α and TGF-β1. METTL3 deficiency 
triggers EndMT in  vitro and exacerbates pulmonary vascular remodeling and PH 
progression in vivo. Mechanistically, Kruppel-like factor 2 (KLF2), a downstream effector 
of METTL3, undergoes significant suppression in an  m6A-dependent manner. Ectopic 
expression of KLF2 protects hPAECs against EndMT, offering a novel perspective for 
therapeutic research in PH.

Materials and methods
Animal models

Conditional C57BL/6 Mettl3 knockout mice were created by flanking exons 2/3 in 
Mettl3 genomic DNA with loxP sites. These mice, termed Mettl3flox/flox (Mettl3fl/fl), were 
then crossed with a tamoxifen-inducible Cdh5 promoter-driven Cre line (Cdh5-CreERT2) 
to generate endothelial-specific Mettl3 knockout mice (Cdh5-CreERT2;Mettl3fl/fl). 
Littermates bearing the Mettl3fl/fl genotype served as controls. Tamoxifen was delivered 
via intraperitoneal injection (20  mg/kg/day × 5  days, i.p.) a week prior to exposure to 
hypoxic conditions. Male mice, aged 8 weeks, from both the Cdh5-CreERT2;Mettl3fl/fl 
and Mettl3fl/fl genotypes, were randomly assigned into two groups and housed in either 
normoxic (21%  O2) or hypoxic (10%  O2) environments for 3 weeks. After anesthetizing 
with 10% chloral hydrate (0.3–0.4 mL/100 g), these mice underwent hemodynamics and 
histological analysis.

Cell culture

Human pulmonary artery endothelial cells (hPAECs) were purchased from 
ScienCell  Research Laboratories (ScienCell,  3100, San Diego, USA) and Human 
embryonic kidney (HEK293T) cells were sourced from the American Type Culture 
Collection (ATCC, CRL-11268, Manassas, VA, USA). HEK293T cells were propagated 
in DMEM (Dulbecco’s Modified Eagle Medium, Corning, 10-013-CVR) supplemented 
with 10% FBS and 1% penicillin–streptomycin (Solarbio, P1400) and maintained in 
an incubator containing 5%  CO2. hPAECs were cultured in full ECM (endothelial cell 
medium, Sciencell, 1001) supplemented with 5% FBS, 1% endothelial cell growth 
addition (ECGS), and 1% penicillin–streptomycin, and were also incubated under the 
aforementioned conditions. For hypoxia experiments, hPAECs were placed in a special 
hypoxia incubator infused with a gas mixture of 5%  CO2 and nitrogen to obtain 1% 
oxygen concentration. Oxygen concentration was monitored continuously (Forma 3130; 
Thermo Scientific, Rockford, IL).

Mouse endothelial cell isolation

Mouse endothelial cells were isolated as described [28, 29]. In brief, the peripheral 
lung tissues (about 1.0 mm on the edge of the lung tissue) encompassing microvessels 
were sheared and minced. The tissues were individually digested at 37  °C for 30  min 
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in phosphate buffer saline (PBS) supplemented with collagenase (2  mg/mL), papain 
(0.4  mg/mL), bovine serum albumin (BSA, 2  mg/mL) and DNase I (15  mg/mL). The 
homogenate was filtered through a 40 μm cell strainer. The cell suspension was collected 
and incubated with mouse CD31 microbeads (Miltenyi Biotec, 130-097-418) at 4 °C for 
15 min. The microbeads were washed with PBS supplemented with 2 mM EDTA and 
0.5% BSA using a MS column (Miltenyi Biotec, 130-042-201) and a magnetic separator 
(Miltenyi Biotec, 130-042-303), and then used for total RNA isolation.

Cytokine treatment

Overnight cultured hPAECs at approximately 30% confluence were treated with 5 ng/
mL TNF-α and 5 ng/mL TGF-β1 in the ECM and incubated for 3 days. The cell lines 
were utilized between the 4th and 6th passages.

Plasmid construction and lentivirus production

Lentiviral shRNA and overexpression vectors were constructed based on a modified 
Lenti-X vector (Clontech), with the U6 and cytomegalovirus (CMV) promoter directing 
the expression of shRNA and cDNA, respectively. The coding sequences (CDSs) of 
METTL3 (NM_019852.5) and KLF2 (NM_016270.4) were cloned into the lentivirus 
vector to generate the pLV-OE-METTL3 and pLV-OE-KLF2 expression vectors, 
respectively. Additionally, both the wild-type (WT) and  m6A mutant KLF2 3′-UTR were 
inserted into the pLV-OE-KLF2 vector downstream of the KLF2 CDS. The lentivirus 
particles were prepared in HEK293T cells through transfection of three distinct plasmids 
at a ratio of 2:1:3, namely, (i) psPAX2 (Addgene), (ii) pCMV-VSV-G (Addgene), and (iii) 
the lentiviral vector. After transfection for 72  h, the virus in the culture medium was 
harvested, filtered through 0.45-μm polyvinylidene difluoride filters (Millipore, SLH033) 
and preserved at − 80  °C. For lentiviral infection, 1 ×  105 cells at 40–50% confluence 
were infected with 2–3 × 10^5 transduction units (TU) of lentiviruses in the presence of 
polybrene at a final concentration of 5 μg/mL. The primers used are listed in Additional 
file 1: Table S1.

Quantitative real‑time polymerase chain reaction (qRT‑PCR)

Total RNA was extracted utilizing RNAiso Plus (TaKaRa, Dalian, China). The SYBR 
Green method was employed for cDNA synthesis with oligo (dT) and random primers 
as previously described [30]. The relative mRNA expression levels normalized to β-actin 
were calculated using the  2−ΔΔCt method. The primers used are listed in Additional file 1: 
Table S2.

Western blotting

Both cells and tissue were lysed using cold RIPA buffer (50 mmol/L Tris·HCl, pH 7.5, 
150  mmol/L NaCl, 1% NP-40, 0.25% sodium deoxycholate, and 1  mmol/L EDTA) 
supplemented with protease inhibitor cocktail (Roche, Mannheim, Germany). Protein 
concentration was determined with the Bicinchoninic Acid Protein Assay Kit (Thermo 
Fisher Scientific). Equal amounts of protein (~ 30 μg) were subjected to SDS-PAGE and 
transferred to PVDF membranes. Following blocking with 5% BSA in Tris-buffered 
Saline-Tween 20 (TBST; 20  mmol/L Tris·HCl, pH 7.6, 150  mmol/L NaCl, and 0.1% 
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Tween 20), the membranes were incubated with primary antibodies overnight at 4  °C 
and then with horseradish peroxidase-conjugated goat anti-rabbit IgG or goat anti-
mouse IgG secondary antibodies at room temperature for 1  h. The protein bands 
were visualized using a chemiluminescence detection module (Pierce Biotechnology, 
Rockford, IL) and captured on a Chemiluminescence Intelligent Image Workstation 
(BLT GelView 6000Plus, China). The antibodies used are listed in Additional file  1: 
Table S4.

Tube formation assay

hPAECs infected with either shNC or shMETTL3 lentivirus were seeded on Matrigel 
(BD, New Jersey, USA) in 24-well plates at a density of 1 ×  105 cells/well. After a 6-h 
incubation at 37  °C, tube morphological features were assessed and quantified using 
ImageJ software.

Wound healing assay

To evaluate cell migration, a wound healing assay was conducted. Confluent hPAECs 
infected with either shNC or shMETTL3 lentiviruses were gently scratched within 
24-well plates. The cells were then cultivated in 0.2% FBS-ECM, and images of the 
wounded areas were captured at 0, 12, 24, and 36 h. The wound closure percentage was 
calculated using the formula: migration area (%) = (original area – remaining area)/
original area × 100. ImageJ was employed for image analysis.

Luciferase reporter assays

The JASPAR database (https:// jaspar. gener eg. net/) was used to analyze the promoter 
sequences. SM22 expression regulation was assessed using a dual reporter gene assay 
comprising a firefly luciferase construct and a Renilla luciferase reference construct 
pRL-TK (Promega, Madison, WI). A 1.2 kb SM22 promoter segment was PCR-amplified 
from human genomic DNA and inserted into the pGl4.3 vector between XhoI and 
MluI. HEK293T cells stably expressing either shNC or shKLF2 were cotransfected with 
150 ng of pGl4.3-SM22-WT (or pGl4.3-SM22-Mut) and 5 ng of pRL-TK reporter using 
PEI reagent. After 48 h of transfection, dual luciferase activities were measured with a 
Dual-luciferase Reporter System (E1980,  Promega, Madison WI USA) using a Lumat 
LB9508 luminometer (Berthold, Bad Wildbad, Germany), with firefly luciferase activity 
normalized to the Renilla luciferase activity for each sample.

Hemodynamic measurements

The transonic catheter was utilized to determine the mean right ventricular systolic 
blood pressure (RVSP). These readings were documented using the MP150 system 
and subsequently analyzed by the AcqKnowledge 4.2 software package (BIOPAC 
Systems, Inc.). Following the hemodynamic evaluations, the animals were euthanized. 
For assessment of right ventricular remodeling, the heart was dissected, and the right 
ventricular hypertrophy index (RVHI) was determined by calculating the weight ratio of 
the right ventricle (RV) to the sum of the left ventricle plus ventricular septum (LV + S).

https://jaspar.genereg.net/
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Morphological and histological analysis

For morphological evaluations, lung sections from paraffin-embedded samples 
were stained with hematoxylin–eosin (HE). To quantify the medial wall thickness, 
10–15 pulmonary arteries with diameters of 50–100  μm were inspected from each 
mouse. The percentage of wall thickness and wall area was calculated using the 
following formulas: relative wall thickness = (outer perimeter − inside perimeter)/
outer perimeter, and relative wall area = (outer area − inside area)/outer area. In the 
immunostaining process, the lung sections were rehydrated in alcoholic baths after 
dewaxing. After antigen retrieval using citric acid buffer (pH 6.0), primary antibodies 
against α-SMA (1:200, GB111364, Servicebio), METTL3 (1:200, GB114688, 
Servicebio), and either Cy3-labeled (1:1000, Jackson ImmunoResearch Labs) or Alexa 
Fluor 488-labeled secondary antibodies (1:1000, Abcam) were applied. Each section 
was then counterstained with DAPI Fluoromount-G.

RNA sequencing and data analysis

cDNA libraries were prepared using the VAHTS Stranded mRNA-seq Library Prep 
Kit for Illumina (NR612, Vazyme, Inc., Nanjing, China) and subsequently sequenced 
on the Illumina NovaSeq 6000 platform. After quality control and read mapping 
to the human reference genome (RGCh38/hg38), differential expression analysis 
between control and treated samples was performed using the DESeq2 R package 
(1.20.0). A padj-value < 0.05 and fold change (FC) ≥ 2 were the criteria for significantly 
differential expression. Differentially expressed genes were further analyzed for 
pathway involvement using the Kyoto Encyclopedia of Genes and Genomes (KEGG). 
A KEGG term with Q values ≤ 0.05 was considered to be significantly enriched.

MeRIP‑qPCR

For methylated RNA Immunoprecipitation-based qPCR (MeRIP-qPCR), total RNAs 
from hPAECs infected with either shNC or shMETTL3 lentiviruses were utilized. 
Briefly, 10  μg of total RNA was combined with 1  μg of anti-m6A antibody (Cat. no. 
202 003 Synaptic Systems) or the respective control IgG (ab172730, Abcam) in 200 μL 
1 × IP buffer. This mixture was incubated at 4 °C for 2 h, followed by a 2-h incubation 
with protein A/G magnetic beads (Sera-Mag, USA) at 4  °C. The immunoprecipitated 
RNAs were then eluted by treatment with Thermolabile Proteinase K (#P8111S, 
NEB) in reverse transcription buffer at 37 °C for 30 min, and then at 55 °C for 10 min 
to inactivate the enzyme. The eluted RNAs were directly subjected to RT and qPCR 
analysis. Additionally, 0.5 μg of the initial total RNA was reserved as input. The relative 
enrichment of  m6A in each sample was calculated by normalization to this input control.

RNA methylation quantification

The methylation quantification of the purified RNA was assayed using the EpiQuik 
 m6A RNA Methylation Quantification Kit (P-9005, EpiGentek) according to the 
manufacturer’s instructions.
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mRNA stability assay

Cells were treated with actinomycin D (5 μg/mL) for the indicated time and the mRNA 
levels at each time point were analyzed by qRT-PCR.

Statistical methods

The data were analyzed using GraphPad Prism version 8.3.0 (GraphPad Software, 
Inc., San Diego, CA). All data are presented as the mean value ± standard deviation 
(mean ± SD). For comparisons between two groups, a two-tailed unpaired t test 
was employed. Differences among three or more groups were analyzed using one-
way ANOVA followed by Tukey’s multiple comparisons test. A P value of < 0.05 was 
considered statistically significant.

Results
METTL3 was downregulated in EndMT of hPAECs

To elucidate the impact of  m6A modification in endothelial-to-mesenchymal transition 
(EndMT), we analyzed the global  m6A methylation status and the expression of RNA 
methylation-associated enzymes, METTL3, METTL14, WTAP, FTO, and ALKBH5, 
in cytokine (TNF-α and TGF-β1)-induced EndMT of hPAECs (Fig.  1A). Our findings 
revealed that the  m6A level of total RNA in the cytokine-treated hPAECs was signifi-
cantly reduced compared to that in the untreated control (Ctrl) group (Fig. 1B). Con-
currently, a significant reduction in the endothelial markers CD31 and VE-cadherin, 
coupled with a pronounced increase in the mesenchymal markers SM22 and N-cad-
herin, was observed (Fig.  1C, D), suggesting a robust EndMT in the cytokine-treated 
hPAECs. Among the enzymes examined, METTL3 exhibited the most significant reduc-
tion during EndMT. While METTL14, FTO, and ALKBH5 also showed decreased 
expression, albeit to a lesser degree, WTAP levels remained stable (Fig. 1C, D). Further 
investigation into hypoxia-induced EndMT in hPAECs also revealed a marked reduction 
in METTL3 expression as hypoxia duration increased (Fig. 1E, F). These findings suggest 
that METTL3 may play a critical role in mediating EndMT in PH, leading us to focus on 
METTL3 in our subsequent research.

METTL3 inhibition promotes EndMT and leads to endothelial dysfunction in vitro

To investigate the biological role of METTL3 downregulation in EndMT in hPAECs, 
we employed lentivirus-mediated shRNA to target METTL3. METTL3 expression was 
significantly reduced in hPAECs infected with shMETTL3 lentivirus (Fig. 2A, B). This 
suppression of METTL3 reduced the endothelial markers CD31 and VE-cadherin but 
elevated the mesenchymal markers N-cadherin and SM22 (Fig. 2A, B). A rescue experi-
ment demonstrated that overexpression of METTL3 reversed cytokine (TNF-α and 
TGF-β1)-induced decrease of METTL3 (Fig. 2C, D). Additionally, METTL3 overexpres-
sion mitigated the cytokine-induced reduction in CD31 and VE-cadherin levels, while 
concurrently attenuating the elevation of SM22 and N-cadherin (Fig. 2C, D). A tube for-
mation assay suggested that METTL3 elimination impaired the angiogenic potential of 
hPAECs relative to the control (Fig. 2E). Furthermore, a wound healing assay indicated 
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enhanced cell migration with METTL3 inhibition compared to the control (Fig.  2F). 
Collectively, these results underline that METTL3 plays an important role in preventing 
EndMT and endothelial dysfunction in hPAECs.

Endothelial‑specific Mettl3 ablation aggravates hypoxia‑induced PH in vivo

To elucidate the role of METTL3 in the progression of pulmonary hypertension, we 
generated endothelial-specific Mettl3 knockout mice (Fig.  3A). Subsequently, Cdh5-
CreERT2;Mettl3fl/fl (Mettl3ECKO) knockout mice and Mettl3fl/fl control mice were exposed 
to either hypoxia (10%  O2) or normoxia (21%  O2) for 3  weeks. Hemodynamic assess-
ments revealed a significant elevation in right ventricular systolic pressure (RVSP) and 
right ventricular hypertrophy index (RVHI) in Mettl3fl/fl mice under hypoxia compared 
to normoxia (Fig.  3B, C). Compared to hypoxic Mettl3fl/fl mice, Mettl3ECKO mice dis-
played higher increases in both RVSP and RVHI under hypoxic conditions (Fig. 3B, C), 

Ctrl

100μM

TNF-α + TGF-β1

100μM

0.000%

0.005%

0.010%

0.015%

0.020%

0.025%

m
6 A

 le
ve

l i
n 

to
ta

l R
N

A **

Ctrl

TNF-α 
+ T

GF-β1

CD31

VE-ca
d

N-ca
d

SM22

METTL3

***
***

**
***

**
***

*
*

*
*

E

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
el

at
iv

e 
m

R
N

A 
le

ve
l 

   
   

   
  (

/N
or

)

Nor Hyp,6 h Hyp,12 h
Hyp,24 h Hyp,48 h

0

1

2

3

4
Nor
Hyp

kDa Nor Hyp (24h)

CD31130

VE-cad130

N-cad130

METTL370

SM2222

β-actin42

R
el

at
iv

e 
pr

ot
ei

n 
le

ve
l

CD31

VE-ca
d

N-ca
d

SM22

METTL3

** * **

**

*

kDa kDaCtrl
TNF-α 

+ T
GF-β1

Ctrl
TNF-α 

+ T
GF-β1

130 CD31

130 N-cad

130 VE-cad

42 β-actin

22 SM22

70 METTL3

65 METTL14

55 WTAP

50 ALKBH5

42 β-actin

58 FTO

0.0

0.5

1.0

1.5

2.0
2

4

6

8

10

R
el

at
iv

e 
pr

ot
ei

n 
le

ve
l

ns

CD31

VE-ca
d

N-ca
d

SM22

METTL3

METTL1
4

FTO

ALK
BH5

W
TA

P

Ctrl
TNF-α + TGF-β1

***

***

***

*

*******

0

1

2

3

4

5

6

7

ns

*****

**

*

****

**

CD31

VE-ca
d

N-ca
d

SM22

METTL3

METTL1
4

FTO

ALK
BH5

WTA
P

R
el

at
iv

e 
m

R
N

A 
le

ve
l Ctrl

TNF-α + TGF-β1

A B

F

C

D
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suggesting that Mettl3 knockout in endothelial cells aggravated hypoxia-induced PH 
hemodynamic alterations. Histological analysis also exhibited pronounced pulmonary 
arterial wall thickening and remodeling in Mettl3ECKO mice compared to Mettl3fl/fl mice 
(Fig.  3D–F). Immunostaining using an antibody against α-SMA further validated this 
thickening in Mettl3ECKO mice (Fig. 3G).

In addition, qRT-PCR assays demonstrated a significant reduction of METTL3 
expression in both the lungs and PAECs of Mettl3ECKO mice compared to Mettl3fl/fl mice 
(Fig. 3H, I). Trace levels of METTL3 were detectable in knockout mouse PAECs, likely 
because the METTL3 gene continued to generate truncated transcripts following the 
deletion of several exons, specifically exons 2, 3, and also exon 4, potentially as a result 
of alternative splicing. Sequence analysis revealed that frameshift mutations within these 
truncated transcripts resulted in premature termination codons, effectively preventing 
the production of functional METTL3 protein (Additional file  1: Fig. S1; Table  S3). 
Endothelial-specific knockout of Mettl3 in mice induced a marked downregulation of 
VE-cadherin alongside an upregulation of N-cadherin and SM22 in both the lungs and 
PAECs of Mettl3ECKO mice compared to Mettl3fl/fl mice (Fig.  3H, I). Taken together, 
these findings indicate that endothelial-specific deletion of Mettl3 boosts EndMT and 
exaggerates pulmonary vascular remodeling and PH.

Inhibition of METTL3 disrupts inflammatory signaling by targeting KLF2 

in an  m6A‑dependent manner

To elucidate the mechanisms by which METTL3 modulates EndMT, transcriptomic 
analyses were performed on hPAECs transfected with shMETTL3 or control shRNA 
(shNC), and on those treated with cytokines (TNF-α and TGF-β1) versus PBS (as a con-
trol, Ctrl). Quantitative analysis identified 913 differentially expressed genes (DEGs) in 
METTL3-silenced hPAECs [padj-value < 0.05; fold change (FC) ≥ 2], consisting of 433 
up- and 480 down-regulated genes (Additional file  1: Fig. S2A). In cytokine-treated 
hPAECs, 3117 DEGs were observed [padj-value < 0.05; fold change (FC) ≥ 2], comprising 
1838 up- and 1279 down-regulated genes (Additional file 1: Fig. S2B). An intersection of 
these DEG datasets identified 251 overlapping genes (Fig. 4A). KEGG analysis of these 
genes highlighted several inflammation-related pathways, including cytokine-cytokine 
receptor interaction, TNF signaling pathway, NF-κB signaling pathway, fluid shear stress 
and atherosclerosis, and chemokine signaling (Fig.  4B). The most significant DEGs in 
these pathways are detailed in Fig. 4C.

Among the identified DEGs, KLF2 is known to exhibit anti-inflammatory and 
antithrombotic activities in endothelial cells [31, 32]. qRT-PCR and western blotting 
analyses confirmed the dramatic downregulation of KLF2 in hPAECs following METTL3 
knockdown (Fig.  4D, E). TNF-α/TGF-β1-treated hPAECs also displayed markedly 
decreased KLF2 mRNA and protein levels (Fig. 4F, G). In addition, KLF2 downregulation 
was observed during the progression of hypoxia-induced EndMT in hPAECs (Fig. 4H). 
Intriguingly, the qRT-PCR assay highlighted a significant decrease in KLF2 in the lungs 
and PAECs of Mettl3ECKO mice compared to Mettl3fl/fl mice under hypoxic conditions 
(Fig.  4I, J). These findings suggest that elimination of Mettl3 promotes EndMT and 
facilitates PH through modulating KLF2.
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Subsequently, we investigated the mechanism by which METTL3 and cytokines 
regulate the expression of KLF2. MeRIP-qPCR analysis revealed that KLF2 mRNA 
was immunoprecipitated from hPAECs using an anti-m6A antibody but not with the 
IgG control (Fig.  4K). METTL3 silencing resulted in decreased  m6A modification on 
KLF2, indicating the important role of METTL3 in regulating KLF2 expression through 
 m6A methylation. Furthermore, the  m6A enrichment of KLF2 was also reduced during 
cytokine-induced EndMT in hPAECs (Fig. 4L). Additionally, to explore the mechanism 
through which METTL3-specific  m6A methylation controls KLF2 expression, Control 
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and METTL3-deficient hPAECs were subjected to treatment with the transcriptional 
inhibitor actinomycin D. This treatment demonstrated that suppression of METTL3 
leads to a decrease in KLF2 mRNA stability, indicating that METTL3-specific  m6A 
methylation controls KLF2 expression by regulating KLF2 mRNA stability (Fig.  4M). 
This finding is consistent with Mo’s report that a higher  m6A level promotes KLF2 
mRNA stability [33].

Collectively, our findings suggest that METTL3 potentially modulates hPAEC EndMT 
through KLF2 in an  m6A-dependent manner.

The functional role of KLF2 in modulating EndMT

To elucidate the functional role of KLF2 in modulating EndMT, we silenced KLF2 in 
hPAECs using lentivirus-mediated shRNA. Knockdown of KLF2 resulted in decreased 
expression of CD31 and VE-cadherin (Fig.  5A, B). In contrast, KLF2 overexpression 
enhanced their expression in hPAECs. Moreover, silencing KLF2 elevated the lev-
els of SM22 and N-cadherin, whereas overexpressing KLF2 inhibited them in hPAECs 
(Fig. 5A, B). A rescue assay revealed that KLF2 overexpression counteracted the cytokine 
(TNF-α and TGF-β1)-induced decrease in CD31 and VE-cadherin levels, simultane-
ously reducing the increase in SM22 and N-cadherin (Fig. 5C). To reveal the underly-
ing mechanism by which KLF2 modulates EndMT, we assessed the expression levels of 
the EndMT-related transcription factors Snail, Zeb1, Zeb2, and Slug, which play critical 
roles in EndMT progression [34, 35]. Our findings indicate that these transcription fac-
tors were significantly decreased in hPAECs upon KLF2 overexpression (Fig. 5D). Con-
sistently, METTL3 silencing led to an increase in their levels (Fig. 5E).

We utilized an  m6A site predictor SRAMP (http:// www. cuilab. cn/ sramp/) and 
identified two high-scoring  m6A modification sites (sites 1242 and 1348) within the 
3′-UTR of KLF2 mRNA (Additional file 1: Fig. S3). To investigate the effects of  m6A 

Fig. 5 Upregulation of KLF2 protects hPAECs against EndMT. A, B The mRNA expression levels of CD31, 
VE-cadherin (VE-cad), N-cadherin (N-cad), and SM22 in hPAECs were assessed by qRT-PCR following KLF2 
silencing (A) and KLF2 overexpression (B) (n = 3). C The mRNA levels of KLF2, CD31, VE-cad, N-cad and SM22 
were detected by qRT-PCR in the Ctrl and cytokine-treated hPAECs infected with lentivirus overexpressing 
the KLF2 coding sequence (OE-KLF2) or OE-NC (n = 3). D, E The mRNA expression levels of the transcription 
factors Snail, Zeb1, Zeb2, and Slug in hPAECs were assessed by qRT-PCR under KLF2 overexpression (D) and 
METTL3 inhibition (E) (n = 3). F, G hPAECs were infected with lentiviruses overexpressing KLF2 CDS-3′-UTR 
with either wild type (WT) or mutant (mut, A-to-T mutation)  m6A sites (F), and the mRNA levels of KLF2, 
CD31, VE-cad, N-cad, and SM22 were detected by qRT-PCR (G). β-Actin was used as an internal reference for 
qRT-PCR. H Potential binding sites of KLF2 on the SM22 promoter were identified using the JASPAR database 
(http:// jaspar. gener eg. net/). I HEK293T cells expressing either shNC or shKLF2 were transfected with luciferase 
reporter plasmids containing the wild-type SM22 promoter or its variants with specified mutations (site 1, 
− 233 to − 239; site 2, − 111 to − 117). Luciferase activity was quantified 48 h after transfection (n = 3). A 
two-tailed unpaired t test (A, B, D, E, I) or one-way ANOVA followed by Tukey’s multiple comparisons test 
(C, G) was used to estimate the significance. Statistical significance is denoted by *P < 0.05, **P < 0.01, and 
***P < 0.001. J A schematic of  m6A modification of KLF2 regulating EndMT. Under normal physiological 
conditions, METTL3-driven  m6A modification maintains KLF2 expression, sustaining the levels of CD31 and 
VE-cadherin while inhibiting the transcription factors Snail, Zeb1, Zeb2, and Slug, as well as the mesenchymal 
markers N-cadherin and SM22, in PAECs. However, when exposed to pathological stimuli, such as 
pro-inflammatory cytokines or hypoxia, the decrease in METTL3 downregulates  m6A methylation, leading to 
diminished KLF2. This results in the upregulation of EndMT-associated transcription factors and mesenchymal 
markers, thereby promoting EndMT and the onset of PH

(See figure on next page.)

http://www.cuilab.cn/sramp/
http://jaspar.genereg.net/
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modifications on KLF2 in the context of EndMT, we incorporated these potential 
 m6A sites into lentiviruses overexpressing KLF2 by replacing adenosine with thymine 
at each site (Fig.  5F). Analysis of hPAECs infected with these lentiviruses revealed 
that KLF2 expression levels in cells with either single or double mutant KLF2 3′-UTR 
were lower than those in cells with the wild-type (WT) KLF2 3′-UTR (Fig.  5G). 
Additionally, mutations at either or both  m6A sites led to decreased CD31 and 
VE-cadherin levels and increased SM22 and N-cadherin levels, compared to the WT 
KLF2 3′-UTR. These results indicate that METTL3 regulates KLF2 expression and its 
impact on EndMT through an  m6A-dependent mechanism.

Using the JASPAR database (https:// jaspar. gener eg. net/), we identified two potential 
KLF2 binding sites within the promoter region of SM22 (site 1, − 233 to − 239; site 
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2, − 111 to − 117; Fig. 5H). The dual-luciferase reporter assay revealed that silencing 
KLF2 increased luciferase activity in comparison to the shNC group, indicating 
the suppressive effect of KLF2 on SM22 promoter activity (Fig.  5I). Interestingly, 
mutating binding site 2, but not site 1, led to an increase in luciferase activity, 
indicating the prevention of KLF2 binding to the SM22 promoter regardless of the 
levels of KLF2 (Fig.  5I). These results suggest that KLF2 might protect cells against 
EndMT through both indirect regulation of EndMT-relevant transcription factors 
and direct modulation of SM22 transcriptional activity.

Discussion
Pulmonary hypertension (PH) is a progressive disorder characterized by endothelial 
dysfunction, abnormal proliferation of smooth muscle cells, and infiltration of 
inflammatory cells, resulting in vascular remodeling [36]. EndMT is pivotal in the 
pathogenesis of endothelial dysfunction in PH.

Several molecular mechanisms have been implicated in the onset of EndMT including 
hypoxia [6], aberrant inflammatory and BMPR2 regulation [9, 10], reactive oxygen 
species [11], and various forms of epigenetic regulation such as DNA methylation [37], 
histone modification [38], and non-coding RNA [14, 39]. In this study, we observed a 
significant downregulation of METTL3 during EndMT in hPAECs. Our experiments 
demonstrated that silencing METTL3 significantly induces EndMT in  vitro. Further, 
through the use of endothelial-specific knockout mouse models, we confirmed that 
genetic deletion of Mettl3 leads to exacerbated endothelial cell dysfunction, pulmonary 
vascular remodeling, and the progression of PH in  vivo. Mechanistically, METTL3 
modulates EndMT via regulating KLF2 in an  m6A-dependent manner. Consequently, 
our findings highlight the crucial role of RNA epigenetics in the pathogenesis of 
PH-associated EndMT.

Kruppel-like factor 2 (KLF2) is a shear stress-sensitive transcription factor that is 
predominantly expressed in ECs and is essential for maintaining endothelial homeostasis 
[40, 41]. Inhibition of KLF2 has been shown to induce EndMT in HUVECs [42], whereas 
enhanced KLF2 expression can counteract brain-derived neurotrophic factor-induced 
EndMT in HUVECs by impeding HK1-mediated glucose metabolism reprogramming 
[43]. A missense mutation in KLF2 has been identified in heritable pulmonary 
arterial hypertension (HPAH) [44], highlighting its significant role in PH progression. 
Furthermore, KLF2 levels are decreased in the lung tissues of PH patients [39]. KLF2 
overexpression leads to an increase in exosomal miR-181a-5p and miR-324-5p, which 
in turn diminishes ECs apoptosis, NFκB signaling, VEGF-driven proliferation, and 
pulmonary vascular remodeling through targeting the Notch4 and ETS1 pathways 
[39]. In our research, we found that knockdown of KLF2 induces EndMT, while its 
overexpression prevents EndMT in hPAECs. We also revealed that high levels of KLF2 
suppress the expression of EndMT-related transcription factors. Collectively, these 
findings underline the protective role of KLF2 against EC dysfunction.

Various factors have been correlated with the downregulation of KLF2 expression 
in PH, including interrupted BMPR2 activity [44], pro-inflammatory cytokines [45], 
and impaired AMP-activated kinase activity [46]. Our research reveals that METTL3-
mediated  m6A modification plays a key role in the regulation of KLF2 expression. 
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Silencing METTL3 leads to decreases in both  m6A modification and KLF2 mRNA levels. 
Furthermore, mutations in the  m6A site of KLF2 mRNA compromise KLF2 expression, 
thereby diminishing its protective effect against EndMT. Analogously, Mo et al. reported 
that atorvastatin-induced reduction in FTO promoted KLF2 and eNOS expression via 
 m6A modification, affecting endothelial function in atherosclerosis [33]. These findings 
collectively emphasize the key role of  m6A RNA methylation in regulating EndMT 
through modulating KLF2 expression.

Research has demonstrated that KLF proteins exert strict regulatory control over 
the expression of mesenchymal markers. Specifically, the loss of KLF4 elevates the 
expression of collagens, VCAM-1, SMA, and SM22 in human lung ECs [47]. Moreover, 
KLF4 represses SM22 transcription during the phenotypic transition of smooth muscle 
cells via cooperatively binding with pELK-1 to the SM22 promoter [48]. In this study, 
we revealed that KLF2 inhibition enhanced the levels of the mesenchymal markers 
SM22 and N-cadherin, while KLF2 overexpression led to their reduction. Furthermore, 
KLF2 directly bound to the SM22 promoter, suppressing its transcription. These results 
underscore the critical role of KLFs in regulating the expression of mesenchymal 
markers, particularly SM22, in various contexts.

Contrary to our observations, Kong et  al. recently reported an upregulation of 
METTL3 in hypoxia-induced EndMT, which facilitates EndMT via the activation of the 
TRPC6/calcineurin/NFAT signaling pathways [27]. The discrepancy may be explained by 
differences in experimental models (hPAECs versus rat PAECs), the specific downstream 
targets of METTL3 (KLF2 versus TRPC6), and cellular responses to stimuli, including 
TNF-α/TGF-β1 and hypoxia. Notably, our study detected an increase in METTL3 
expression in hPAECs in early hypoxia (at 12  h), which significantly declined with 
prolonged exposure (at 24 h and 48 h) (Fig. 1E). Additionally, our transcriptome analysis 
revealed selective upregulation within the TRPC6/calcineurin/NFAT pathway, with 
only TRPC6/NFATC4 in cytokine-treated hPAECs and NFATC1 in METTL3-silenced 
hPAECs showing significant upregulation (Additional file  1: Fig. S4). This finding 
contrasts with the results in Chunchu Kong’s study.

Additionally, Qin et al. observed elevated METTL3 expression in hypoxic conditions, 
which subsequently enhances pulmonary artery smooth muscle cells (PASMCs) 
proliferation and migration by modulating the PTEN/PI3K/Akt signaling pathway [49]. 
The contrasting observations suggest that the role of METTL3 varies among different 
cell types involved in PH, such as PAECs versus PASMCs. Moreover, the stage of PH 
progression, as well as specific downstream targets and signaling pathways influenced 
by METTL3 (KLF2 versus PTEN), can further lead to diverse outcomes. This highlights 
the nuanced nature of epigenetic regulation in complex diseases such as PH. Future 
research is imperative to delineate the conditions under which targeting the METTL3/
KLF2 pathway could offer the most advantageous therapeutic outcomes. This entails 
investigating diverse models of PH, analyzing patient samples across various stages of 
the disease, and examining the impact of other epigenetic and environmental factors.

In this study, we also observed dysregulation of METTL14, FTO, and ALKBH5 during 
cytokine-treated EndMT. While our study highlights the significance of METTL3 in 
the  m6A modification of KLF2 and its implications for EndMT in PH, the contributions 
of METTL14, FTO, and ALKBH5 present an intriguing avenue for future research. 
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Understanding the intricate balance between  m6A methylation and demethylation on 
KLF2 by these enzymes could unravel new dimensions in the epigenetic regulation of PH 
and identify novel therapeutic targets. Additionally, we focused on RVSP and RVHI as 
primary indicators of PH hemodynamics in mouse models, due to their direct relevance 
to PH pathophysiology and widespread recognition as markers of PH progression. A 
more detailed assessment of hemodynamics, encompassing cardiac output and total 
pulmonary vascular resistance, would enhance understanding of the effects of epigenetic 
modifications on PH.

Conclusion
In conclusion, our research unveils a novel METTL3/KLF2 pathway crucial for 
safeguarding hPAECs against EndMT. Under normal arterial conditions, METTL3-
mediated  m6A methylation of KLF2 mRNA ensures its optimal expression and 
functionality, which consequently inhibits the detrimental activation of EndMT-relevant 
transcription factors such as Snail, Zeb1, Zeb2, and Slug, along with mesenchymal 
markers including N-cadherin and SM22. In contrast, stimuli such as pro-inflammatory 
cytokines or hypoxia diminish METTL3 levels, resulting in reduced  m6A methylation 
and consequently decreased KLF2 expression. This downregulation of KLF2 triggers an 
elevation in EndMT-relevant transcription factors and mesenchymal markers, and leads 
to a concomitant decrease in the endothelial markers CD31 and VE-cadherin. Such 
alterations fuel the progression of EndMT and, ultimately, PH (Fig. 5J). These insights 
link METTL3-mediated  m6A modification of KLF2 with EndMT, offering a more 
comprehensive view of the molecular landscape of PH.
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