Skip to main content

Table 1 Summary of therapeutic characteristics of TQ in various types of cancer

From: Potential anticancer properties and mechanisms of thymoquinone in osteosarcoma and bone metastasis

Cancer type

Cell lines

Animal model

TQ dosage

Mechanism of TQ action

Overall outcome

References

Bladder cancer

T-24 and HTB-9 cell lines

–

In vitro: 10 μM

in vivo: –

↑: –

↓: Snail, Slug, N-cadherin, mTOR

Inhibition of EMT process

[130]

 

T-24 and 253 J cell lines

–

In vitro: 20–80 μM

in vivo: –

↑: Bax, cytochrome C release, caspase-3, caspase-7, caspase-9, GRP78, CHOP, PERK, IRE1, ATF6

↓: Bcl-2

Apoptosis induction via targeting endoplasmic reticulum stress-dependent mitochondrial pathway

[131]

 

T-24 and 253 J cell lines

Xenograft mouse

In vitro: 20–40 μM

in vivo: 10 mg/kg/3 days

↑: E-cadherin and

↓: N-cadherin, vimentin, Wnt/β-catenin, MYC, axin-2, MMP7, cyclin D1, and MET

Inhibition of EMT and metastasis processes, decrease in tumor weight

[132]

Breast cancer

BT-474, MCF-7, and MDA-MB-231 cell lines

–

In vitro: 10–30 μM

in vivo: –

↑: Caspase-7, caspase-8, caspase-9, PPAR-γ

↓: Bcl-2, Bcl-xL, survivin

Induction of apoptosis, cell cycle arrest, and antiproliferative effects

[133]

 

Doxorubicin-resistance MCF-7 cell lines

–

In vitro: 100 μM

in vivo: –

↑: Bax, p53, p21, PTEN, caspase-3, caspase-7, caspase-9, PARP cleavage

↓: Akt, Bcl-2, cyclin B1

Apoptosis induction and disruption of mitochondrial membrane potential and cell cycle arrest at the sub-G1 phase

[134]

 

MDA-MB-468 and T-47D cell lines

–

In vitro: 12.5, 18 μM

in vivo: –

↑: Bax, cytoplasmic cytochrome c, p53, p21, procaspase-3, PARP cleavage

↓: Akt, Bcl-2, Bcl-xL cyclin D1, cyclin E, survivin

Cell cycle arrest at the G1 phase and apoptosis induction

[135]

 

MDA-MB-231 and MDA-MB-468 cell lines

–

In vitro: 2.5, 5 μM

in vivo: –

↑: AIF, caspase-3, caspase-8, caspase-9, cytoplasmic cytochrome c, γH2AX

↓: Akt, XIAP, PARP-1

Cell cycle arrest at the G1 phase and apoptosis induction in mutant p53 cells

[136]

 

MCF-7 and MDA-MB-231 cell lines

–

In vitro: 10–100 μM

in vivo: –

↑: –

↓: –

Significant decrease in the viability of cancer cells

[137]

 

MDA-MB-231 and MDA-MB-436 cell lines

Xenograft mouse

In vitro: 5–15 μM

in vivo: 20, 100 mg/kg/3 day

↑: miR-603

↓: eEF-2 K, NF-κB

Inhibition of cell proliferation, migration, and invasion, decrease in tumor weight

[138]

 

MCF-7 and TD47 cell lines

–

In vitro: 0.01–300 μM

in vivo: –

↑: –

↓: –

Augmentation of gemcitabine anticancer activities through upregulation of apoptosis and autophagy processes

[139]

 

MDA-MB-231 and MDA-MB-436 cell lines

Xenograft mouse

In vitro: 0–45 μg/ml

in vivo: 5 mg/kg/day

↑: miR-361

↓: Rac, RhoA, VEGF-A

Angiogenesis and metastasis suppression and tumor burden reduction, decrease in tumor weight

[140]

Cervical cancer

SiHa cell lines

–

In vitro: 1–30 μg/ml

in vivo: –

↑: p53

↓: Bcl-2

Cell cycle arrest at the sub-G1 phase, induction of apoptosis and necrosis

[141]

 

HeLa cell lines

–

In vitro: 12.5–100 μM/ml

in vivo: –

↑: BCL2L10, BIK, caspase-1, FASL

↓: NF-κB

Increase in cell death, promotion of apoptosis

[59]

 

CaSki and SiHa cell lines

–

In vitro: 1–40 μM/ml

in vivo: –

↑: E-cadherin

↓: TWIST1, Zeb-1

Induction of apoptosis, inhibition of EMT, migration, and invasion processes

[142]

Colorectal cancer

HCT 116wt, DLD-1, HT29 cell lines

–

In vitro: 40 μM

in vivo: 25 mg/kg/day

↑: –

↓: ERK1/2, MEK. PAK1

Decreased cell viability, induction of apoptosis and necrosis, decrease in tumor weight

[143]

 

Irinotecan (CPT-11)-resistant LoVo cell lines

–

In vitro: 0–8 μM

in vivo: –

↑: Atg7, atg12, becline-1, LAMP2, KC3-II, JNK, p38

↓: IKKα/β, NF-κB, Snail, Twist, vimentin, MMP-2, MMP-9, ERK1/2, PI3K

Increased cell rate, mitochondrial membrane permeability, induction of apoptosis and autophagy

[144]

 

Irinotecan (CPT-11)-resistant LoVo cell lines

–

In vitro: 0–10 μM

in vivo: –

↑: JNK, p38,

↓: IKKα/β, NF-κB, Snail, Twist, vimentin, MMP-2, MMP-9, ERK1/2, PI3K

Suppression of metastasis and EMT processes

[145]

 

5FU-resistant HCT116 cell lines

Xenograft mouse

In vitro: 0–100 μM

in vivo: 20 mg/kg/2 days

↑: p21, p53, γH2AX,

↓: CD44, EpCAM, ki67, NF-κB, MEK

Induction of apoptosis and reduced cell invasion and migration, decrease in tumor weight

[146]

Gastric cancer

BGC-823, HGC-27, MGC-803, and SGC-7901 cell lines

Xenograft mouse

In vitro: 25–100 μM

in vivo: 20 mg/kg/day

↑: Bax, caspase-3, caspase-9, cytochrome c

↓: Bcl-2

Increased sensitivity to 5-FU, induction of apoptosis, decrease in tumor weight

[147]

 

BGC-823, HGC-27, and SGC-7901 cell lines

Xenograft mouse

In vitro: 10–125 μM

in vivo: 10–30 mg/kg/2 days

↑: Bax, caspase-3, caspase-7, caspase-9

↓: Bcl-2, cyclin D, c-Src, JAK2, STAT3, survivin, VEGF

Inhibition of cell growth and angiogenesis, apoptosis induction, and reduction of tumor weight

[50]

 

HGC-27, MGC-803, and SGC-7901 cell lines

Xenograft mouse

In vitro: 5–80 μM

in vivo: 10 mg/kg/2 days

↑: AIF, Bax, caspase-3, caspase-9, cytochrome c, PTEN

↓: Bcl-2, cyclin D1, p-gp

Increased sensitivity to cisplatin, induction of apoptosis, decrease in tumor weight

[148]

 

AGS, SNU638, and SNU719 cell lines

Xenograft mouse

In vitro: 5–50 μM

in vivo: 5 mg/kg/2 days

↑: E-cadherin, TTP

↓: MUC-4, N-cadherin, Slug, Snail, TWIST

Reduced cell proliferation, metastasis, EMT process, and tumor weight

[149]

Glioblastoma

CCF-STTG1 and U-87 cell lines

–

In vitro: 10–100 μM

in vivo: –

↑: –

↓: ERK, FAK, MMP-2, MMP-9

Reduced cell survival, migration, adhesion, and metastasis processes

[150]

 

S6 cell lines

 

In vitro: 10–100 μM

in vivo: –

↑: –

↓: ERK, JNK, NF-κB, p38, PKC

Induction of apoptosis and necrosis, ROS generation, promotion of cell cycle arrest, mitochondrial dysfunction

[151]

Liver cancer

SNNC-7721 and HepG2 cell lines

–

In vitro: 20–100 μM

in vivo: –

↑: Bax, caspase-8

↓: Bcl-2, VEGF

Cell cycle arrest at G2/M phase and induction of apoptosis

[152]

 

–

Xenograft rats

In vitro: –

In vivo: 20 mg/kg/day

↑: Caspase-3, caspase-8, caspase-9, TRAIL/TRAILR2, GSH

↓: Bcl-2, TGF-β1, MDA

Suppressed development of cancer cells via reducing oxidative stress and induction of apoptosis, decreasing tumor weight

[153]

 

HCC and HepG2 cell lines

–

In vitro: 30– 70 μM

in vivo: –

↑: Caspase-3, cleaved PARP

↓: Bcl-2

Pronounced sensitivity of cancer cells to doxorubicin and cisplatin, ROS generation, and apoptosis induction

[154]

 

HepG2, Huh7 cell lines

–

In vitro: 6.25–50 μM

↑: Caspase-3, miR-16, and miR-375

↓: Bcl-2

Increased cell death, stimulated apoptosis, synergy effect of doxorubicin

[155]

Lung cancer

A549 cell lines

–

In vitro: 5–160 μM

in vivo: –

↑: P16

↓: cyclin D1, ERK1/2, MMP-2, MMP-9, PCNA

Decreased rate of cancer cell proliferation, migration, invasion, and metastasis, cell cycle arrest at the G0/G1 phase

[156]

 

A549 cell lines

–

In vitro: 25–50 μM

in vivo: –

↑: Bax, caspase–3, caspase-9, p53

↓: Bcl-2

Decreased cell viability and induction of apoptosis as well as necrosis

[157]

 

A549 cell lines

–

In vitro: 5–80 μM

in vivo: –

↑: Bax, caspase-3, p53, PARP

↓: Bcl-2

Depolymerization of microtubule and disruption of mitotic spindle organization, promotion of apoptosis, and decrease in cell viability

[158]

 

A549 cell lines

Xenograft mouse

In vitro: 0.5–10.5 μM

in vivo: 5 mg/kg/day

↑: Bax, caspase-3, caspase-9, miR-16, miR-375, p53

↓: Bcl-2

Cell cycle arrest at sub-G0/G1 phase, triggering of apoptosis, and inhibition of metastasis

[159]

Neuroblastoma

Neuro-2a cell lines

–

In vitro: 10–70 μM

in vivo: –

↑: Bax, caspase-3, caspase-9, cleaved PARP, cytochrome c

↓: Bcl-2, XIAP

Reduced cell survival, migration, adhesion, and metastasis processes

[160]

 

Neuro-2a cell lines

–

In vitro: 10–70 μM

in vivo: –

↑:

↓: MMP-2, MMP-9, NF-κB

Induced apoptosis and suppressed invasion and metastatic processes

[161]

Ovarian cancer

ID8_NGL, NCI/ADR, and OVCAR-3

Xenograft mouse

In vitro: 2.5–50 μM

in vivo: 20 mg/kg/2 days

↑: Bax, cleaved PARP

↓: Bcl-2, PCNA

Increased cell death, sensitivity of cancer cells to cisplatin, induced apoptosis

[162]

 

SK-OV-3 cell lines

–

In vitro: 10–25 μM

in vivo: –

↑: Bax,

↓: Bcl-2

Induced apoptosis, cell cycle arrest at the S phase, and reduced anticancer impact of cisplatin

[163]

Pancreatic cancer

AsPC-1, BxPC-3, and PANC-1 cell lines

Xenograft mouse

In vitro: 10–50 μM

in vivo: 50 mg/kg/2 days

↑: Bax, caspase-3, caspase-9, cytosolic cytochrome c

↓: Akt/mTOR, Bcl-2, Bcl-xL mitochondrial cytochrome c, Notch1, p65, PTEN, survivin, XIAP

Reduced cell viability, cell cycle arrest at the G0-G1 phase, induced apoptosis, and increased sensitivity to gemcitabine

[164]

 

AsPC-1, Hs766T, and MiaPaCa-2 cell lines

Xenograft mouse

In vitro: 10–50 μM

in vivo: 5–30 mg/kg/2 day

↑: Bax, p21, p53

↓: Bcl-2

Reduced cell survival, cell cycle arrest at the G0-G1 phase, inhibited histone deacetylation, triggered histone acetylation, induced apoptosis, and decreased tumor size

[56]

 

PANC-1 and MiaPaCa-2 cell lines

–

In vitro: 6.25 μM

↑: caspase-3, miR-24–1, miR-101, cleaved-PARP, PKM2

↓: –

Suppression of cell viability, stimulation of apoptosis, and increased effect of gemcitabine

[165]

Prostate cancer

1–120 μM

DU-145

In vitro: 1–120 μM

↑:

↓: AktPI3K

Decreased cell viability and increased anticancer effect of docetaxel

[166]

 

DU-145 and PC-30 cell lines

xenograft mouse

In vitro: 1.25–30 μM

in vivo: 5–30 mg/kg/2 days

↑: E-cadherin,

↓: Slug, TGF-β, Smad-2, Smad-3, vimentin

Reduce cell survival, migration, and invasion

[167]

 

DU-145, LNCaP, and PC-3 cell lines

–

In vitro: 5–15 μM

in vivo: –

↑: –

↓: Akt, IL-7, IL-7R, MMP-3, MMP-7, NF-κB

Inhibition of cell invasion and metastasis

[168]

  1. ↑: Increased level
  2. ↓: Decreased level