Skip to main content


On the way to understand biological complexity in plants: S-nutrition as a case study for systems biology


The establishment of technologies for high-throughput DNA sequencing (genomics), gene expression (transcriptomics), metabolite and ion analysis (metabolomics/ionomics) and protein analysis (proteomics) carries with it the challenge of processing and interpreting the accumulating data sets. Publicly accessible databases and newly development and adapted bioinformatic tools are employed to mine this data in order to filter relevant correlations and create models describing physiological states. These data allow the reconstruction of networks of interactions of the various cellular components as enzyme activities and complexes, gene expression, metabolite pools or pathway flux modes. Especially when merging information from transcriptomics, metabolomics and proteomics into consistent models, it will be possible to describe and predict the behaviour of biological systems, for example with respect to endogenous or environmental changes. However, to capture the interactions of network elements requires measurements under a variety of conditions to generate or refine existing models. The ultimate goal of systems biology is to understand the molecular principles governing plant responses and consistently explain plant physiology.


  1. 1.

    Schuster, S., Fell, D.A. and Dandekar, T. A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat. Biotechnol. 18 (2000) 267–268.

  2. 2.

    Ideker, T., Thorsson, V., Ranish, J.A., Christmas, R., Buhler, J., Eng, J.K., Bumgarner, R., Goodlett, D.R., Aebersold, R. and Hood, L. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292 (2001) 929–934.

  3. 3.

    Papin, J.A., Price, N.D., Wiback, S.J., Fell, D.A. and Palsson, B.O. Metabolic pathways in the post-genome era. Trends Biochem. Sci. 28 (2003) 250–258.

  4. 4.

    Holtorf, H., Guitton, M.-C. and Reski, R. Plant functional genomics. Naturwissenschaften 89 (2002) 235–249.

  5. 5.

    Oliver, S.G., Winson, M.K., Kell, D.B. and Baganz, F. Systematic functional analysis of the yeast genome. Trends Biotechnol. 16 (1998) 373–378.

  6. 6.

    Blackstock, W.P. and Weir, M.P. Proteomics: quantitative and physical mapping of cellular proteins. Trends Biotechnol. 17 (1999) 121–127.

  7. 7.

    Thiellement, H., Bahrman, N., Damerval, C., Plomion, C., Rossingnol, M., Santoni, V., de Vienne, D. and Zivy, M. Proteomics for genetic and physiological studies in plants. Electrophoresis 20 (1999) 2013–2026.

  8. 8.

    van Wijk, K.J. Update on plant proteomics. Challenges and prospects of plant proteomics. Plant Physiol. 126 (2001) 501–508.

  9. 9.

    Fiehn, O., Kopka, J., Dörmann, P., Altmann, T., Trethewey, R.N. and Willmitzer, L. Metabolite profiling for plant functional genomics. Nat. Biotechnol. 18 (2000) 1157–1161.

  10. 10.

    Trethewey, R.N., Krotzky, A.J. and Willmitzer, L. Metabolic profiling: a rosetta stone for genomics? Curr. Opin. Plant Biol. 2 (1999) 83–85.

  11. 11.

    Trethewey, R.N. Gene discovery via metabolic profiling. Curr. Opin. Biotechnol. 12 (2001) 135–138.

  12. 12.

    Trethewey, R.N. Metabolite profiling as an aid to metabolic engineering in plants. Curr. Opin. Plant Biol. 7 (2004) 196–201.

  13. 13.

    Harmer, S.L., Hogenesch, L.B., Straume, M., Chang, H.S., Han, B., Zhu, T., Wang, X., Kreps, J.A. and Kay, S.A. Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290 (2000) 2110–2113.

  14. 14.

    Goda, H., Shimada, Y., Asami, T., Fujioka, S. and Yoshida, S. Microarray analysis of brassinosteroid-regulated genes in Arabidopsis. Plant Physiol. 130 (2002) 1319–1334.

  15. 15.

    Müssig, C., Fischer, S. and Altmann, T. Brassinosteroid-regulated gene expression. Plant Physiol. 129 (2002) 1241–1251.

  16. 16.

    Rashotte, A.M., Carson, S.D., To, J.P. and Kieber, J.J. Expression profiling of cytokinin action in Arabidopsis. Plant Physiol. 132 (2003) 1998–2011.

  17. 17.

    Kreps, J.A., Wu, Y., Chang, H.S., Zhu, T., Wang, X. and Harper, J. Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol. 130 (2002) 2129–2141.

  18. 18.

    Seki, M., Narusaka, M., Ishida, J., Nanjo, T., Fujita, M., Oono, Y., Kamiya, A., Nakajima, M., Enju, A., Sakurai, T., Satou, M., Akiyama, K., Taji, T., Yamaguchi-Shinozaki, K., Carninci, P., Kawai, J., Hayashizaki, Y. and Shinozaki, K. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J. 31 (2002) 279–292.

  19. 19.

    Hammond J.P., Bennett, M.J., Bowen, H.C., Broadley, M.R., Eastwood, D.C., May, S.T., Rahn, C., Swarup, R., Woolaway, K.E. and White, P.J. Changes in gene expression in Arabidopsis shoots during phosphate starvation and the potential for developing smart plants. Plant Physiol. 132 (2003) 578–596.

  20. 20.

    Oono, Y., Seki, M., Nanjo, T., Narusaka, M., Fujita, M., Satoh, R., Satou, M., Sakurai, T., Ishida, J., Akiyama, K., Iida, K., Maruyama, K., Satoh, S., Yamaguchi-Shinozaki, K. and Shinozaki, K. Monitoring expression profiles of Arabidopsis gene expression during rehydration process after dehydration using ca. 7000 full-length cDNA microarray. Plant J. 34 (2003) 868–887.

  21. 21.

    Menges, M., Hennig, L., Gruissem, W. and Murray, J.A.H. Cell cycleregulated gene expression in Arabidopsis. J. Biol. Chem. 277 (2002) 41987–42002.

  22. 22.

    Tepperman, J.M., Zhu, T., Chang, H.S., Wang, X. and Quail, P.H. Multiple transcription-factor genes are early targets of phytochrome A signaling. Proc. Natl. Acad. Sci. USA 98 (2001) 9437–9442.

  23. 23.

    Che, P., Gingerich, D.J., Lall, S. and Howell, S.H. Global and hormone-induced gene expression changes during shoot development in Arabidopsis. Plant Cell 14 (2002) 2771–2785.

  24. 24.

    Honys, D. and Twell, D. Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiol. 132 (2003) 640–652.

  25. 25.

    Köhler, C., Hennig, L., Spillane, C., Pien, S., Gruissem, W. and Grossniklaus, U. The Polycomb-group protein MEDEA regulates seed development by controlling expression of the MADS-box gene PHERES1. Genes Dev. 17 (2003) 1540–1553.

  26. 26.

    Puthoff, D.P., Nettleton, D., Rodermel, S.R. and Baum, T.J. Arabidopsis gene expression changes during cyst nematode parasitism revealed by statistical analyses of microarray expression profiles. Plant J. 33 (2003) 911–921.

  27. 27.

    Tao, Y., Xie, Z., Chen, W., Glazebrook, J., Chang, H.S., Han, B., Zhu, T., Zou, G. and Katagiri, F. Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae. Plant Cell 15 (2003) 317–330.

  28. 28.

    Hampton, C.R., Bowen, H.C., Broadley, M.R., Hammond, J.P., Mead, A., Payne, K.A., Pritchard, J. and White, P.J. Cesium Toxicity in Arabidopsis. Plant Physiol. 136 (2004) 3824–3837.

  29. 29.

    Sahr, T., Voigt, G., Paretzke, H.G., Schramel, P. and Ernst, D. Caesium-affected gene expression in Arabidopsis thaliana. New Phytologist 165 (2005) 747–754.

  30. 30.

    Laule, O., Fürholz, A., Chang, H.S., Zhu, T., Wang, X., Heifetz, P.B., Gruissem, W. and Lange, M. Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 100 (2003) 6866–6871.

  31. 31.

    Wang, R., Guegler, K., LaBrie, S.T. and Crawford, N.M. Genomic analysis of a nutrient response in Arabidopsis reveals diverse expression patterns and novel metabolic and potential regulatory genes induced by nitrate. Plant Cell 12 (2000) 1491–1509.

  32. 32.

    Wang, Y.-H., Garvin, D.F. and Kochian, L.V. Nitrate-induced genes in tomato roots. Array analysis reveals novel genes that may play a role in nitrogen nutrition. Plant Physiol. 127 (2001) 345–359.

  33. 33.

    Colebatch, G., Kloska, S., Trevaskis, B., Freund, S., Altmann, T. and Udvardi, M.K. Novel aspects of symbiotic nitrogen fixation uncovered by transcript profiling with cDNA arrays. Mol. Plant Microbe Interact. 15 (2002) 411–420.

  34. 34.

    Wang, Y.-H., Garvin, D.F. and Kochian, L.V. Rapid induction of regulatory and transporter genes in response to phosphorus, potassium, and iron deficiencies in tomato roots. Evidence for cross talk and root/rhizosphere-mediated signals. Plant Physiol. 130 (2002) 1361–1370.

  35. 35.

    Thimm, O., Essigmann, B., Kloska, S., Altmann, T. and Buckhout, T.J. Response of Arabidopsis to iron deficiency stress as revealed by microarray analysis. Plant Physiol. 127 (2001) 1030–1043.

  36. 36.

    Negishi, T., Nakanishi, H., Yazaki, J., Kishimoto, N., Fujii, F., Shimbo, K., Yamamoto, K., Sakata, K., Sasaki, T., Kikuchi, S., Mori, S. and Nishizawa, N.K. cDNA microarray analysis of gene expression during Fe-deficiency stress in barley suggests that polar transport of vesicles is implicated in phytosiderophore secretion in Fe-deficient barley roots. Plant J. 30 (2002) 83–94.

  37. 37.

    Wang, R., Okamoto, M., Xing, X. and Crawford, N.M. Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1,000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, Iron, and sulfate metabolism. Plant Physiol. 132 (2003) 556–567.

  38. 38.

    Maathuis, F.J.M., Filatov, V., Herzyk, P., Krijger, G.C., Axelsen, K.B., Chen, S., Green, B.J., Li, Y., Madagan, K.L., Sánchez-Fernández, R., Forde, B.G., Palmgren, M.G., Rea, P.A., Williams, L.E., Sanders, D. and Amtmann, A. Transcriptome analysis of root transporters reveals participation of multiple gene families in the response to cation stress. Plant J. 35 (2003) 675–692.

  39. 39.

    Hirai, Y.M., Fujiwara, T., Awazuhara, M., Kimura, T., Masaaki, N. and Saito, K. Global expression profiling of sulphur-starved Arabidopsis by DNA macroarray reveals the role of O-acetyl-L-serine as a general regulator of gene expression in response to sulphur nutrition. Plant J. 33 (2003) 651–663.

  40. 40.

    Maruyama-Nakashita, A., Inoue, E., Watanabe-Takahashi, A., Yamaya, T. and Takahashi, H. Transcriptome profiling of sulphur-responsive genes in Arabidopsis reveals global effects of sulphur nutrition on multiple metabolic pathways. Plant Physiol. 132 (2003) 597–605.

  41. 41.

    Nikiforova, V., Freitag, J., Kempa, S., Adamik, M., Hesse, H. and Hoefgen, R. Transcriptome analysis of sulphur depletion in Arabidopsis thaliana: interlacing of biosynthetic pathways provides response specificity. Plant J. 33 (2003) 633–650.

  42. 42.

    Maathuis, F.J.M. and Amtmann, A. Transcriptional profiling of membrane transporters. in: Plant Nutritional Genomics, (Broadley, M. and White, PJ. Eds.), Plant Sciences Division, School of Biosciences, University of Nottingham, UK, 2005, 170–200.

  43. 43.

    Nikiforova, V., Gakière, B., Kempa, S., Adamik, M., Willmitzer, L., Hesse, H. and Hoefgen, R. Towards dissecting nutrient metabolism in plants: a systems biology case study on sulfur metabolism. J. Exp. Bot. 55 (2004) 1861–1870.

  44. 44.

    Fiehn, O. Metabolomics — the link between genotypes and phenotypes. Plant Mol. Biol. 48 (2002) 155–171.

  45. 45.

    Sumner, L.W., Mendes, P. and Dixon, R.A. Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry 62 (2003) 817–836.

  46. 46.

    Stitt, M. and Fernie, A.R. From measurements of metabolites to metabolomics: an ‘on the fly’ perspective illustrated by recent studies of carbon-nitrogen interactions. Curr. Opin. Biotechnol. 14 (2003) 136–144.

  47. 47.

    Nielsen J. and Oliver S. The next wave in metabolome analysis. Trends Biotechnol. 23 (2005) 544–546.

  48. 48.

    The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408 (2000) 796–815.

  49. 49.

    Bino, R.J., Hall, R.D., Fiehn, O., Kopka, J., Saito, K., Draper, J., Nikolau, B.J., Mendes, P., Roessner-Tunali, U., Beale, M.H., Trethewey, R.N., Lange, B.M., Wurtele, E.S. and Sumner, L.W. Potential of metabolomics as a functional genomics tool. Trends Plant Sci. 9 (2004) 418–425.

  50. 50.

    Jenkins, H., Hardy, N., Beckmann, M., Draper, J., Smith, A.R., Taylor, J., Fiehn, O., Goodacre, R., Bino, R.J., Hall, R., Kopka, J., Lane, G.A., Lange, B.M., Liu, J.R., Mendes, P., Nikolau, B.J., Oliver, S.G., Paton, N.W., Rhee, S., Roessner-Tunali, U., Saito, K., Smedsgaard, J., Sumner, L.W., Wang, T., Walsh, S., Wurtele, E.S. and Kell, D.B.A. Proposed framework for the description of plant metabolomics experiments and their results. Nature Biotechnol. 22 (2004) 1601–1606.

  51. 51.

    Schauer, N., Steinhauser, D., Strelkov, S., Schomburg, D., Allison, G., Moritz, T., Lundgren, K., Roessner-Tunali, U., Forbes, M.G., Willmitzer, L., Fernie, A.R. and Kopka, J. GC-MS libraries for the rapid identification of metabolites in complex biological samples. FEBS Lett. 579 (2005) 1332–1337.

  52. 52.

    Roessner, U., Wagner, C., Kopka, J., Trethewey, R.N. and Willmitzer, L. Technical advance: simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant J. 23 (2000) 131–142.

  53. 53.

    Roessner, U., Luedemann, A., Brust, D., Fiehn, O., Linke, T., Willmitzer, L. and Fernie, A.R. Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13 (2001) 11–29.

  54. 54.

    Wagner, C., Sefkow, M. and Kopka, J. Construction and application of a mass spectral and retention time index database generated from plant GC/EI-TOF-MS metabolite profiles. Phytochemistry 62 (2003) 887–900.

  55. 55.

    Fiehn, O. and Weckwerth, W. Deciphering metabolic networks. Eur. J. Biochem. 270 (2003) 579–588.

  56. 56.

    Ward, J.L., Harris, C., Lewis, J. and Beale, M.H. Assessment of 1H-NMR spectroscopy and multivariate analysis as a technique for metabolite fingerprinting of Arabidopsis thaliana. Phytochemistry 62 (2003) 949–957.

  57. 57.

    Ott, K.-H., Aranibar, N., Singh, B. and Stockton, G. Metabolomics classifies pathways affected by bioactive compounds. Artificial neural network classification of NMR spectra of plant extracts. Phytochemistry 62 (2003) 971–985.

  58. 58.

    Defernez, M. and Colquhoun, I.J. Factors affecting the robustness of metabolite fingerprinting using 1H-NMR spectra. Phytochemistry 62 (2003) 1009–1017.

  59. 59.

    Le Gall, G., Colquhoun, I.J., Davis, A.L., Collins, G.J. and Verhoeyen, M.E. Metabolite profiling of tomato (Lycopersicon esculentum) using 1H-NMR spectroscopy as a tool to detect potential unintended effects following a genetic modification. J. Agric. Food Chem. 51 (2003) 2447–2456.

  60. 60.

    Soga, T., Ueno, Y., Naraoka, H., Ohashi, Y., Tomita, M. and Nishioka, T. Simultaneous determination of anionic intermediates for Bacillus subtilis metabolic pathways by capillary electrophoresis electrospray ionization mass spectrometry. Anal. Chem. 74 (2002) 2233–2239.

  61. 61.

    Tolstikov, V.V. and Fiehn, O. Analysis of highly polar compounds of plant origin: combination of hydrophilic interaction chromatography and electrospray ion trap mass spectrometry. Anal. Biochem. 301 (2002) 298–307.

  62. 62.

    Rea, P.A. Ion genomics. Nature Biotechnol. 21 (2003) 1149–1151.

  63. 63.

    Lahner, B., Gong, J., Mahmoudian, M., Smith, E.L., Abid, K.B., Rogers, E.E., Guerinot, M.L., Harper, J.F., Ward, J.M., McIntyre, L., Schroeder, J.I. and Salt, D.E. Genomic scale profiling of nutrient and trace elements in Arabidopsis thaliana. Nature Biotechnol. 21 (2003) 1215–1221.

  64. 64.

    Salt, D.E. Update on Plant Ionomics. Plant Physiol. 136 (2004) 2451–2456.

  65. 65.

    Lahner, B. and Salt, D.E. Mapping links between the genome and ionome in plants. in: Plant Nutritional Genomics, (Broadley, M. and White, P.J. Eds.), Plant Sciences Division, School of Biosciences, University of Nottingham, UK, 2005, 150–170.

  66. 66.

    Nikiforova, V.J., Kopka, J., Tolstikov, V., Fiehn, O., Hopkins, L., Hawkesford, M.J., Hesse, H. and Hoefgen, R. Systems rebalancing of metabolism in response to sulfur deprivation, as revealed by metabolome analysis of Arabidopsis plants. Plant Physiol. 138 (2005) 304–318.

  67. 67.

    Molloy, M.P., Phadke, N.D., Maddock, J.R. and Andrews, P.C. Two-dimensional electrophoresis and peptide mass fingerprinting of bacterial outer membrane proteins. Electrophoresis 22 (2001) 1686–1696.

  68. 68.

    Lester, P. and Hubbard, S. Comparative bioinformatic analysis of complete protecomes and protein parameters for cross-species identification in proteomics. Proteomics 2 (2002) 1392–1405.

  69. 69.

    Görg, A., Obermaier, C., Boguth, G., Harder, A., Scheibe, B., Wildgruber, R. and Weiss W. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21 (2000) 1037–1053.

  70. 70.

    Wolters, D.A., Washburn, M.P. and Yates, J.R. 3rd. An automated multidimensional protein identification technology for shotgun proteomics. Anal. Chem. 73 (2001) 5683–5690.

  71. 71.

    Link, A.J., Eng, J., Schieltz, D.M., Carmack, E., Mize, G.J., Morris, D.R., Garvik, B.M. and Yates, J.R. 3rd. Direct analysis of protein complexes using mass spectrometry. Nature Biotechnol. 17 (1999) 676–682.

  72. 72.

    Shen, Y. and Smith, R. Proteomics based on high-efficiency capillary separations. Electrophoresis 23 (2002) 3106–3124.

  73. 73.

    Jönsson, H., Shapiro, B.E., Meyerowitz, E.M. and Mjolsness, E. (2003) Signaling in multicellular models of plant development. In: On Growth, Form, and Computers (Kumar, S., Bentley, P.J., Eds.) Academic Press, London, UK, 156–161.

  74. 74.

    Stelling, J., Klamt, S., Bettenbrock, K., Schuster, S. and Gilles, E.D. Metabolic network structure determines key aspects of functionality and regulation. Nature 420 (2002) 190–193.

  75. 75.

    Lee, T.I., Rinaldi, N.J., Robert, F., Odom, D.T., Ziv, B.-J., Gerber, G.K., Hannett, N.M., Harbison, C., Thompson, C.M., Simon, I., Zeitlinger, J., Jennings, E.G., Murray, H.L., Gordon, D.B., Ren, B., Wyrick, J.J., Tagne, J.-B., Volkert, T.L., Fraenkel, E., Gifford, D.K. and Young, R.A. Transcriptional Regulatory Networks in Saccharomyces cerevisiae. Science 298 (2002) 799–804.

  76. 76.

    Buckhout, T.J. and Thimm, O. Insights into metabolism obtained from microarray analysis. Curr. Opin. Plant Biol. 6 (2003) 288–296.

  77. 77.

    Girke, T., Ozkan, M., Carter, D. and Raikhel, N.V. Towards a modeling infrastructure for studying plant cells. Plant Physiol. 132 (2003) 410–414.

  78. 78.

    Girke, T., Todd, J., Ruuska, S., White, J., Benning, C. and Ohlrogge, J. Microarray analysis of developing Arabidopsis seeds. Plant Physiol. 124 (2000) 1570–1581.

  79. 79.

    Jasny, B.R. and Ray, L.B. Life and the art of networks. Science 301 (2003) 1863.

  80. 80.

    Bray, D. Molecular networks: The top-down view. Science 301 (2003) 1864–1865.

  81. 81.

    Alon, U. Biological networks: The tinkerer as an engineer. Science 301 (2003) 1866–1867.

  82. 82.

    Askenazi, M., Driggers, E.M., Holtzman, D.A., Norman, T.C., Iverson, S., Zimmer, D.P., Boers, M.E., Blomquist, P.R., Martinez, E.J., Monreal, A.W., Feibelman, T.P., Mayorga, M.E., Maxon, M.E., Sykes, K., Tobin, J.V., Cordero, E., Salama, S.R., Trueheart, J., Royer, J.C. and Madden, K.T. Integrating transcriptional and metabolite profiles to direct the engineering of lovastatin-producing fungal strains. Nature Biotechnol. 21 (2003) 150–156.

  83. 83.

    Urbanczyk-Wochniak, E., Luedemann, A., Kopka, J., Selbig, J., Roessner-Tunali, U., Willmitzer, L. and Fernie, A.R. Parallel analysis of transcript and metabolic profiles: a new approach in systems biology. EMBO Rep. 4 (2003) 989–993.

  84. 84.

    Daub, C.O., Kloska, S. and Selbig, J. MetaGeneAlyse: analysis of integrated transcriptional and metabolite data. Bioinformatics 19 (2003) 2332–2333.

  85. 85.

    Thimm, O., Bläsing, O., Gibon, Y., Nagel, A., Meyer, S., Krüger, P., Müller, L.A., Rhee, S.Y. and Stitt, M. MapMan: A user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 37 (2004) 914–939.

  86. 86.

    Kitano, H. Systems biology: A brief overview. Science 295 (2002) 1662–1664.

  87. 87.

    Hirai, M.Y., Yano, M., Goodenowe, D.B., Kanaya, S., Kimura, T., Awazuhara, M., Arita, M., Fujiwara, T. and Saito, K. Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana. Proc. Nat. Acad. Sci. USA 101 (2004) 10205–10210.

  88. 88.

    Nikiforova, V.J., Daub, C.O., Hesse, H., Willmitzer, L. and Hoefgen, R. Integrative gene-metabolite network with implemented causality deciphers informational fluxes of sulphur stress response. J. Exp. Bot. 56 (2005) 1887–1896.

  89. 89.

    Hirai, M.Y., Klein, M., Fujikawa, Y., Yano, M., Goodenowe, D.B., Yamazaki, Y., Kanaya, S., Nakamura, Y., Kitayama, M., Suzuki, H., Sakurai, N., Shibata, D., Tokuhisa, J., Reichelt, M., Gershenzon, J., Papenbrock, J. and Saito K. Elucidation of gene-to-gene and metabolite-to-gene networks in Arabidopsis by integration of metabolomics and transcriptomics. J. Biol. Chem. 280 (2005) 25590–25595.

  90. 90.

    Gill, R.T., Katsoulakis, E., Schmitt, W., Taroncher-Oldenburg, G., Misra, J. and Stephanopoulos, G. Genome-wide dynamic transcriptional profiling of the light-to-dark transition in Synechocystis sp. strain PCC 6803. J. Bacteriol. 184 (2002) 3671–3681.

  91. 91.

    Graves, P. and Haystead, T. Molecular biologist’s guide to proteomics. Microbiol. Mol. Biol. Rev. 66 (2002) 39–63.

  92. 92.

    Katagiri, F. Attacking complex problems with the power of systems biology. Plant Physiol. 132 (2003) 417–419.

  93. 93.

    Sweetlove, L.J., Last, R.L. and Fernie, A.R. Predictive metabolic engineering: a goal for systems biology. Plant Physiol. 132 (2003) 420–442.

  94. 94.

    Minorsky, P.V. Achieving the in silico plant. Systems biology and the future of plant biological research. Plant Physiol. 132 (2003) 404–409.

  95. 95.

    Chong, L. and Ray, L.B. Whole-istic biology. Science 295 (2002) 1661.

  96. 96.

    Quackenbush, J. Microarrays — guilt by association. Science 302 (2003) 240–241.

  97. 97.

    Stuart, J.M., Segal, E., Koller, D. and Kim, S.K. A gene-coexpression network for global discovery of conserved genetic modules. Science 302 (2003) 249–255.

Download references

Author information

Correspondence to Holger Hesse.

Rights and permissions

Reprints and Permissions

About this article

Key words

  • Sulfur metabolism
  • Systems biology
  • Metabolome
  • Ionome
  • Transcriptome
  • Proteome