Skip to main content


We’d like to understand how you use our websites in order to improve them. Register your interest.

The influence of tin compounds on the dynamic properties of liposome membranes: A study using the ESR method


The influence of organic and inorganic compounds of tin on the dynamic properties of liposome membranes obtained in the process of dipalmitoylphosphatidylcholine (DPPC) sonication in distilled water was investigated. This was carried out by means of the spin ESR probe method. The probes were selected in such a way as to penetrate different areas of the membrane (a TEMPO probe, 5-DOXYL stearic acid, 16-DOXYL stearic acid). Four compounds of tin were chosen: three organic ones, (CH3)4Sn, (C2H5)4Sn and (C3H7)3SnCl, and one inorganic one, SnCl2. The investigated compounds were added to a liposome dispersion, which was prepared prior to that. The concentration of the admixture was changed within the values from 0 to 10%-mole in proportion to DPPC. The studies indicated that the chlorides of tin display the highest activity in their interaction with liposome membranes. Since these compounds have ionic form in a water solution, the obtained result can mean that this form of admixture has a considerable influence on its activity. Furthermore, it was found that there is a slightly stronger influence of tin compounds with a longer hydrocarbon chain on changes in the probes’ spectroscopic parameters.


  1. 1.

    Gray, B.H., Porvaznik, M., Flemming, C. and Lee, L.H. Organotin-induced hemolysis, shape transformation and intramembranous aggregates in human erythrocytes. Cell Biol. Toxiol. 3 (1987) 23–38.

  2. 2.

    Kleszczyńska, H., Hladyszowski, J., Pruchnik, H. and Przestalski, S. Erythrocyte hemolysis by organic tin and lead compounds. Z. Naturforsch. 52c (1997) 65–69.

  3. 3.

    Hamasaki, T., Masumoto, H., Soto, T., Nagase, H., Kito, H. and Toshioka, T. Estimation of the hemolytic effects of various organotin compounds by stucture — active relationships. Appl. Organomet. Chem. 9 (1995) 95–104.

  4. 4.

    Gabrielska, J., Sarapuk, J. and Przestalski, S. Role of hydrophobic and hydrophilic interactions of organotin and organolead compounds with model lipid membranes. Z. Naturforsch. 52c (1997) 209–216.

  5. 5.

    Radecka, H., Zielińska, D. and Radecki, J. Interaction of organic derivatives of tin (IV) and lead (IV) with model lipid membranes. Sci. Total Environ. 234 (1999) 147–153.

  6. 6.

    Kleszczyńska, H., Sarapuk, J. and Przestalski, S. Destabilization of model membranes by organotin compounds. Folia Histochem. Cytobiol. 37 (1999) 1–31.

  7. 7.

    Shimshick, E.J. and McConnell, H.M. Lateral phase separation in phospholipid membranes, Biochemistry 12 (1973) 2351–2360.

  8. 8.

    Schreier, S., Polnaszek, C.F. and Smith, I.C.P. Spin labels in membranes problems in practice, Biochim. Biophys. Acta 515 (1978) 375–436

  9. 9.

    Hemminga, M.A. Interpretation of ESR and saturation transfer ESR spectra of spin labeled lipids and membranes, Chem. Phys. Lipids 32 (1983) 323–383.

  10. 10.

    Podolak, M., Man, D., Waga, S. and Przestalski, S. Bimodal Effect of Amphiphilic Biocide Concentrations on Fluidity of Lipid Membranes, Z. Naturforsch. 51c (1997) 853–858.

  11. 11.

    Podolak, M., Man, D. and Przestalski, S. Effect of solution pH on the organic tin compounds-liposome membranes interaction, Abstracts of the 7 th Conference on Cell Biology, Kraków, Folia Histochem. Cytobiol. 37 (1999) sup. 1, 36.

Download references

Author information



Corresponding author

Correspondence to Dariusz Man.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Man, D., Podolak, M. & Engel, G. The influence of tin compounds on the dynamic properties of liposome membranes: A study using the ESR method. Cell. Mol. Biol. Lett. 11, 56–61 (2006).

Download citation

Key words

  • DPPC liposomes
  • ESR
  • Tin compounds