Skip to main content

Advertisement

Shape variation of bilayer membrane daughter vesicles induced by anisotropic membrane inclusions

Abstract

A theoretical model of a two-component bilayer membrane was used in order to describe the influence of anisotropic membrane inclusions on shapes of membrane daughter micro and nano vesicles. It was shown that for weakly anisotropic inclusions the stable vesicle shapes are only slightly out-of-round. In contrast, for strongly anisotropic inclusions the stable vesicle shapes may significantly differ from spheres, i.e. they have a flattened oblate shape at small numbers of inclusions in the membrane, and an elongated cigar-like prolate shape at high numbers of inclusions in the vesicle membrane.

References

  1. 1.

    Singer, S.J. and Nicholson, G.L. The fluid mosaic model of the structure of cell membranes. Science 175 (1972) 720–731.

  2. 2.

    Israelachvili, J.N. Intermolecular and surface forces. Academic Press Limited, London, (1997).

  3. 3.

    Fisicaro, E. Gemini surfactants: Chemico-physical and biological properties. Cell. Mol. Biol. Lett. 2 (1997) 45–63.

  4. 4.

    Danino, D., Talmon, Y. and Zana, R. Vesicle-to-micelle transformation in systems containing dimeric surfaces. J. Coll. Inter. Sci. 185 (1997) 84–93.

  5. 5.

    Helfrich, W. Elastic properties of lipid bilayers: Theory and possible experiments. Z. Naturforsch. 28 (1973) 693–703.

  6. 6.

    Iglič, A. and Kralj-Iglič, V. Planar Lipid Bilayers (BLMs) and Their Applications, in: (Tien, H.T. and Ottova-Leitmannova, A. Eds). Membrane Science and Technology, Vol. 7 Elsevier Science B.V., Amsterdam, New York, chapter 4 (2003) 143–172.

  7. 7.

    Fournier, J.B. Nontopological saddle-splay and curvature instabilities from anisotropic membrane inclusions. Phys. Rev. Lett. 76 (1996) 4436–4439.

  8. 8.

    Hägerstrand, H. and Isoma, B. Vesiculation induced by amphiphiles in erythrocytes. Biochim. Biophys. Acta 982 (1989) 179–186.

  9. 9.

    Hägerstrand, H. and Isoma, B. Morphological characterization of exovesicles and endovesicles released from human erythrocytes following treatment with amphiphiles. Biochim. Biophys. Acta 1109 (1992) 117–126.

  10. 10.

    Staneva, G., Seigneuret, M., Koumanov, K., Trugnan, G. and Angelova, M.I. Vectorial budding of vesicles by asymmetrical enzymatic formation of ceramide in giant liposomes. Chem. Phys. Lipids 136 (2005) 55–66.

  11. 11.

    Iglič, A. and Hägerstrand, H. Amphiphile-induced spherical microexovesicle corresponds to an extreme local area difference between two monolayers of the membrane bilayer. Med. Biol. Eng. Comp. 37 (1999) 125–129.

  12. 12.

    Tsafrir, I., Caspi, Y., Guedeau-Boudeville, M.A., Arzi, T. and Stavans, J. Budding and tubulation in highly oblate vesicles by anchored amphiphilic molecules. Phys. Rev. Lett. 91 (2003) 138102-1-4.

  13. 13.

    Sjögren, H., Ericsson, C.A., Evenäs, J. and Ulvenlund, S. Interaction between charged polypeptides and nonionic surfactant. Biophys. J. 89 (2005) 4219–4233.

  14. 14.

    Kralj-Iglič, V., Heinrich, V., Svetina, S. and Žekš B. Free energy of closed membrane with anisotropic inclusions. Eur. Phys. J. B 10 (1999) 5–8.

  15. 15.

    Kralj-Iglič, V., Iglič, A., Hägerstrand, H. and Peterlin, P. Stable tubular microexovesicles of the erythrocyte membrane induced by dimeric amphiphiles. Phys. Rev. E 61 (2000) 4230–4234.

  16. 16.

    Iglič, A., Fošnarič, M., Hägerstrand, H. and Kralj-Iglič, V. Coupling between vesicle shape and the non-homogeneous lateral distribution of membrane constituents in Golgi bodies. FEBS Lett. 574 (2004) 9–12.

  17. 17.

    Hägerstrand, H., Kralj-Iglič, V., Fošnarič, M., Bobrowska-Hägerstrand, M., Mrówczyńska, L., Söderström, T. and Iglič, A., Endovesicle formation and membrane perturbation induced by polyoxyethylene-glycolalkylethers in human erythrocytes. Biochim. Biophys. Acta 1665 (2004) 191–200.

  18. 18.

    Markin, V.S. Lateral organization of membranes and cell shapes. Biophys. J. 36 (1981) 1–19.

  19. 19.

    Huttner, W.B. and Zimmerberg, J. Implications of lipid microdomains for membrane curvature, budding and fission-commentary. Curr. Opin. Cell Biol. 13 (2001) 478–484.

  20. 20.

    Kralj-Iglič, V., Iglič, A., Hägerstrand, H. and Bobrowska-Hägerstrand, M. Hypothesis of nanostructures of cell and phospholipid membranes as cell infrastructure. Med. Razgl. 44 (2005) 155–169.

  21. 21.

    Kralj-Iglič, V., Svetina, S. and Žekš, B. Shapes of bilayer vesicles with membrane embedded molecules. Eur. Biophys. J. 24 (1996) 311–321.

  22. 22.

    Hägerstrand, H., Kralj-Iglič, V., Bobrowska-Hägerstrand, M. and Iglič, A. Membrane skeleton detachment in spherical and cylindrical microexovesicle. Bull. Math. Biol. 61 (1999) 1019–1030.

  23. 23.

    Seifert, U. Configuration of fluid membranes and vesicles. Adv. Phys. 46 (1997) 13–137.

  24. 24.

    Helfrich, W. Deformation of lipid bilayer spheres by electric fields. Z. Naturforsch. 29c (1974) 182–183.

Download references

Author information

Correspondence to Aleš Iglič.

Rights and permissions

Reprints and Permissions

About this article

Key words

  • Bilayer membranes
  • Daughter vesicles
  • Anisotropic membrane inclusions