Skip to main content

Shape variation of bilayer membrane daughter vesicles induced by anisotropic membrane inclusions


A theoretical model of a two-component bilayer membrane was used in order to describe the influence of anisotropic membrane inclusions on shapes of membrane daughter micro and nano vesicles. It was shown that for weakly anisotropic inclusions the stable vesicle shapes are only slightly out-of-round. In contrast, for strongly anisotropic inclusions the stable vesicle shapes may significantly differ from spheres, i.e. they have a flattened oblate shape at small numbers of inclusions in the membrane, and an elongated cigar-like prolate shape at high numbers of inclusions in the vesicle membrane.


  1. Singer, S.J. and Nicholson, G.L. The fluid mosaic model of the structure of cell membranes. Science 175 (1972) 720–731.

    PubMed  CAS  Google Scholar 

  2. Israelachvili, J.N. Intermolecular and surface forces. Academic Press Limited, London, (1997).

    Google Scholar 

  3. Fisicaro, E. Gemini surfactants: Chemico-physical and biological properties. Cell. Mol. Biol. Lett. 2 (1997) 45–63.

    CAS  Google Scholar 

  4. Danino, D., Talmon, Y. and Zana, R. Vesicle-to-micelle transformation in systems containing dimeric surfaces. J. Coll. Inter. Sci. 185 (1997) 84–93.

    Article  CAS  Google Scholar 

  5. Helfrich, W. Elastic properties of lipid bilayers: Theory and possible experiments. Z. Naturforsch. 28 (1973) 693–703.

    CAS  Google Scholar 

  6. Iglič, A. and Kralj-Iglič, V. Planar Lipid Bilayers (BLMs) and Their Applications, in: (Tien, H.T. and Ottova-Leitmannova, A. Eds). Membrane Science and Technology, Vol. 7 Elsevier Science B.V., Amsterdam, New York, chapter 4 (2003) 143–172.

    Google Scholar 

  7. Fournier, J.B. Nontopological saddle-splay and curvature instabilities from anisotropic membrane inclusions. Phys. Rev. Lett. 76 (1996) 4436–4439.

    Article  PubMed  CAS  Google Scholar 

  8. Hägerstrand, H. and Isoma, B. Vesiculation induced by amphiphiles in erythrocytes. Biochim. Biophys. Acta 982 (1989) 179–186.

    Article  PubMed  Google Scholar 

  9. Hägerstrand, H. and Isoma, B. Morphological characterization of exovesicles and endovesicles released from human erythrocytes following treatment with amphiphiles. Biochim. Biophys. Acta 1109 (1992) 117–126.

    Article  PubMed  Google Scholar 

  10. Staneva, G., Seigneuret, M., Koumanov, K., Trugnan, G. and Angelova, M.I. Vectorial budding of vesicles by asymmetrical enzymatic formation of ceramide in giant liposomes. Chem. Phys. Lipids 136 (2005) 55–66.

    Article  PubMed  CAS  Google Scholar 

  11. Iglič, A. and Hägerstrand, H. Amphiphile-induced spherical microexovesicle corresponds to an extreme local area difference between two monolayers of the membrane bilayer. Med. Biol. Eng. Comp. 37 (1999) 125–129.

    Google Scholar 

  12. Tsafrir, I., Caspi, Y., Guedeau-Boudeville, M.A., Arzi, T. and Stavans, J. Budding and tubulation in highly oblate vesicles by anchored amphiphilic molecules. Phys. Rev. Lett. 91 (2003) 138102-1-4.

  13. Sjögren, H., Ericsson, C.A., Evenäs, J. and Ulvenlund, S. Interaction between charged polypeptides and nonionic surfactant. Biophys. J. 89 (2005) 4219–4233.

    Article  PubMed  CAS  Google Scholar 

  14. Kralj-Iglič, V., Heinrich, V., Svetina, S. and Žekš B. Free energy of closed membrane with anisotropic inclusions. Eur. Phys. J. B 10 (1999) 5–8.

    Article  Google Scholar 

  15. Kralj-Iglič, V., Iglič, A., Hägerstrand, H. and Peterlin, P. Stable tubular microexovesicles of the erythrocyte membrane induced by dimeric amphiphiles. Phys. Rev. E 61 (2000) 4230–4234.

    Article  Google Scholar 

  16. Iglič, A., Fošnarič, M., Hägerstrand, H. and Kralj-Iglič, V. Coupling between vesicle shape and the non-homogeneous lateral distribution of membrane constituents in Golgi bodies. FEBS Lett. 574 (2004) 9–12.

    Article  PubMed  CAS  Google Scholar 

  17. Hägerstrand, H., Kralj-Iglič, V., Fošnarič, M., Bobrowska-Hägerstrand, M., Mrówczyńska, L., Söderström, T. and Iglič, A., Endovesicle formation and membrane perturbation induced by polyoxyethylene-glycolalkylethers in human erythrocytes. Biochim. Biophys. Acta 1665 (2004) 191–200.

    Article  PubMed  CAS  Google Scholar 

  18. Markin, V.S. Lateral organization of membranes and cell shapes. Biophys. J. 36 (1981) 1–19.

    Article  PubMed  CAS  Google Scholar 

  19. Huttner, W.B. and Zimmerberg, J. Implications of lipid microdomains for membrane curvature, budding and fission-commentary. Curr. Opin. Cell Biol. 13 (2001) 478–484.

    Article  PubMed  CAS  Google Scholar 

  20. Kralj-Iglič, V., Iglič, A., Hägerstrand, H. and Bobrowska-Hägerstrand, M. Hypothesis of nanostructures of cell and phospholipid membranes as cell infrastructure. Med. Razgl. 44 (2005) 155–169.

    Google Scholar 

  21. Kralj-Iglič, V., Svetina, S. and Žekš, B. Shapes of bilayer vesicles with membrane embedded molecules. Eur. Biophys. J. 24 (1996) 311–321.

    PubMed  Google Scholar 

  22. Hägerstrand, H., Kralj-Iglič, V., Bobrowska-Hägerstrand, M. and Iglič, A. Membrane skeleton detachment in spherical and cylindrical microexovesicle. Bull. Math. Biol. 61 (1999) 1019–1030.

    Article  PubMed  Google Scholar 

  23. Seifert, U. Configuration of fluid membranes and vesicles. Adv. Phys. 46 (1997) 13–137.

    Article  CAS  Google Scholar 

  24. Helfrich, W. Deformation of lipid bilayer spheres by electric fields. Z. Naturforsch. 29c (1974) 182–183.

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Aleš Iglič.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bohinc, K., Lombardo, D., Kraljiglič, V. et al. Shape variation of bilayer membrane daughter vesicles induced by anisotropic membrane inclusions. Cell. Mol. Biol. Lett. 11, 90–101 (2006).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Key words