Wilson, J.D., George, F.W. and Griffin, J.E. The hormonal control of sexual development. Science
211 (1981) 1278–1284.
PubMed
CAS
Google Scholar
Quigley, C.A., De Bellis, A., Marschke, K.B., El-Awady, M.K., Wilson, E.M. and French, F.S. Androgen receptor defects: historical, clinical and molecular perspectives. Endocr. Rev.
16 (1995) 271–321.
Article
PubMed
CAS
Google Scholar
Grossmann, M.E., Huang, H. and Tindall, D.J. Androgen receptor signaling in androgen-refractory prostate cancer. J. Natl. Cancer Inst.
93 (2001) 1687–1697.
Article
PubMed
CAS
Google Scholar
Jemal, A., Murray, T., Ward, E., Samuels, A., Tiwari, R.C., Ghafoor, A., Feuer, E.J. and Thun, M.J. Cancer statistics, 2005. CA Cancer J. Clin.
55 (2005) 10–30.
Article
PubMed
Google Scholar
www.nursa.org
MacLean, H.E., Warne, G.L. and Zajac J.D. Localization of functional domains in the androgen receptor. J. Steroid Biochem. Mol. Biol.
62 (1997) 233–242.
Article
PubMed
CAS
Google Scholar
Vanaja, D.K., Mitchell, S.H., Toft, D.O. and Young, C.Y. Effect of geldanamycin on androgen receptor function and stability. Cell Stress Chaperones
7 (2002) 55–64.
Article
PubMed
CAS
Google Scholar
Shang, Y., Myers, M. and Brown, M. Formation of androgen receptor transcription complex. Mol. Cell
9 (2002) 601–610.
Article
PubMed
CAS
Google Scholar
Asirvatham, A.J., Schmidt, M., Gao, B. and Chaudhary, J. Androgens regulate the immune/inflammatory response and cell survival pathways in rat ventral prostate epithelial cells. Endocrinology
147 (2006) 257–271.
Article
PubMed
CAS
Google Scholar
Burnstein, K.L. Regulation of androgen receptor levels: Implications for prostate cancer progression and therapy. J. Cell. Biochem.
95 (2005) 657–669.
Article
PubMed
CAS
Google Scholar
Yeap, B.B., Wilce, J.A. and Leedman, P.J. The androgen receptor mRNA. BioEssays
26 (2004) 672–682.
Article
PubMed
CAS
Google Scholar
Heinlein, C.A. and Chang, C. Androgen receptor (AR) coregulators: an overview. Endocr. Rev.
23 (2002) 175–200.
Article
PubMed
CAS
Google Scholar
Smith, C.L. and O’Malley, B.W. Coregulator function: a key to understanding tissue specificity of selective receptor modulators. Endocr. Rev.
25 (2004) 45–71.
Article
PubMed
CAS
Google Scholar
Sheflin, L., Keegan, B., Zhang, W. and Spaulding, S.W. Inhibiting proteasomes in human HepG2 and LNCaP cells increases endogenous androgen receptor levels. Biochem. Biophys. Res. Commun.
276 (2000) 144–150.
Article
PubMed
CAS
Google Scholar
Pickart, C.M. Mechanisms underlying ubiquitination. Annu. Rev. Biochem.
70 (2001) 503–533.
Article
PubMed
CAS
Google Scholar
Thrower, J.S., Hoffman, L., Rechsteiner, M. and Pickart, C.M. Recognition of the polyubiquitin proteolytic signal. EMBO J.
19 (2000) 94–102.
Article
PubMed
CAS
Google Scholar
Nawaz, Z., Lonard, D.M., Smith, C.L., Lev-Lehman, E., Tsai, S.Y., Tsai, M.J. and O’Malley B.W. The Angelman syndrome-associated protein, E6-AP, is a coactivator for the nuclear hormone receptor superfamily. Mol. Cell. Biol.
19 (1999) 1182–1189.
PubMed
CAS
Google Scholar
Smith, C.L., DeVera, D.G., Lamb, D.J., Nawaz, Z., Jiang, Y.H., Beaudet, A.L. and O’Malley, B.W. Genetic ablation of the steroid receptor coactivator-ubiquitin ligase, E6-AP, results in tissue-selective steroid hormone resistance and defects in reproduction. Mol. Cell. Biol.
22 (2002) 525–535.
Article
PubMed
CAS
Google Scholar
Verma, S., Ismail, A., Gao, X., Fu, G., Li, X., O’Malley, B.W. and Nawaz, Z. The ubiquitin-conjugating enzyme UBCH7 acts as a coactivator for steroid hormone receptors. Mol. Cell. Biol.
24 (2004) 8716–8726.
Article
PubMed
CAS
Google Scholar
Beitel, L.K., Elhaji, Y.A., Lumbroso, R., Wing, S.S., Panet-Raymond, V., Gottlieb, B., Pinsky, L. and Trifiro, M.A. Cloning and characterization of an androgen receptor N-terminal-interacting protein with ubiquitin-protein ligase activity. J. Mol. Endocrinol.
29 (2002) 41–60.
Article
PubMed
CAS
Google Scholar
Kang, H.Y., Yeh, S., Fujimoto, N. and Chang, C. Cloning and characterization of human prostate coactivator ARA54, a novel protein that associates with the androgen receptor. J. Biol. Chem.
274 (1999) 8570–8576.
Article
PubMed
CAS
Google Scholar
Ito, K., Adachi, S., Iwakami, R., Yasuda, H., Muto, Y., Seki, N. and Okano, Y. N-Terminally extended human ubiquitin-conjugating enzymes (E2s) mediate the ubiquitination of RING-finger proteins, ARA54 and RNF8. Eur. J. Biochem.
268 (2001) 2725–2732.
Article
PubMed
CAS
Google Scholar
Lin, H.K., Wang, L., Hu, Y.C., Altuwaijri, S. and Chang, C. Phosphorylation-dependent ubiquitylation and degradation of androgen receptor by Akt require Mdm2 E3 ligase. EMBO J.
21 (2002) 4037–4048.
Article
PubMed
CAS
Google Scholar
Moilanen, A.M., Karvonen, U., Poukka, H., Yan, W., Toppari, J., Jänne, O.A. and Palvimo, J.J. A testis-specific androgen receptor coregulator that belongs to a novel family of nuclear proteins. J. Biol. Chem.
274 (1999) 3700–3704.
Article
PubMed
CAS
Google Scholar
Poukka, H., Aarnisalo, P., Karvonen, U., Palvimo, J.J. and Jänne, O.A. Ubc9 interacts with the androgen receptor and activates receptor-dependent transcription. J. Biol. Chem.
274 (1999) 19441–19446.
Article
PubMed
CAS
Google Scholar
Poukka, H., Karvonen, U., Jänne, O.A. and Palvimo, J.J. Covalent modification of the androgen receptor by small ubiquitin-like modifier 1 (SUMO-1). Proc. Natl. Acad. Sci. USA
97 (2000) 14145–14150.
Article
PubMed
CAS
Google Scholar
Nishida, T. and Yasuda, H. PIAS1 and PIASxα function as SUMO-E3 ligases toward androgen receptor and repress androgen receptor-dependent transcription. J. Biol. Chem.
277 (2002) 41311–41317.
Article
PubMed
CAS
Google Scholar
Moilanen, A.M., Poukka, H., Karvonen, U., Häkli, M., Jänne, O.A. and Palvimo, J.J. Identification of a novel RING finger protein as a coregulator in steroid receptor-mediated gene transcription. Mol. Cell. Biol.
18 (1998) 5128–3519.
PubMed
CAS
Google Scholar
Poukka, H., Karvonen, U., Yoshikawa, N., Tanaka, H., Palvimo, J.J. and Jänne, O.A. The RING finger protein SNURF modulates nuclear trafficking of the androgen receptor. J. Cell. Sci.
113 (2000) 2991–3001.
PubMed
CAS
Google Scholar
Häkli, M., Lorick, K.L., Weissman, A.M., Jänne, O.A. and Palvimo, J.J. Transcriptional coregulator SNURF (RNF4) possesses ubiquitin E3 ligase activity. FEBS Letters
560 (2004) 56–62.
Article
PubMed
CAS
Google Scholar
Murata, S., Minami, Y., Minami, M., Chiba, T. and Tanaka, K. CHIP is a chaperone-dependent E3 ligase that ubiquitylates unfolded protein. EMBO Rep.
2 (2001) 1133–1138.
Article
PubMed
CAS
Google Scholar
Cardozo, C.P., Michaud, C., Ost, M.C., Fliss, A.E., Yang, E., Patterson, C., Hall, S.J. and Caplan, A.J. C-terminal Hsp-interacting protein slows androgen receptor synthesis and reduces its rate of degradation. Arch. Biochem. Biophys.
410 (2003) 134–140.
Article
PubMed
CAS
Google Scholar
He, B., Bai, S., Hnat, A.T., Kalman, R.I., Minges, J.T., Patterson, C. and Wilson, E.M. An androgen receptor NH2-terminal conserved motif interacts with the COOH terminus of the Hsp70-interacting protein (CHIP). J. Biol. Chem.
279 (2004) 30643–30653.
Article
PubMed
CAS
Google Scholar
Rechsteiner, M. and Rogers, S.W. PEST sequences and regulation by proteolysis. Trends Biochem. Sci.
21 (1996) 267–271.
Article
PubMed
CAS
Google Scholar
Wolf, D.H. and Hilt, W. The proteasome: a proteolytic nanomachine of cell regulation and waste disposal. Biochim. Biophys. Acta
1695 (2004) 19–31.
Article
PubMed
CAS
Google Scholar
Lin, H.K., Hu, Y.C., Lee, D.K. and Chang, C. Regulation of androgen receptor signaling by PTEN (phosphatase and tensin homolog deleted on chromosome 10) tumor suppressor through distinct mechanisms in prostate cancer cells. Mol. Endocrinol.
18 (2004) 2409–2423.
Article
PubMed
CAS
Google Scholar
Yang, L., Wang, L., Lin, H.K., Kan, P.Y., Xie, S., Tsai, M.Y., Wang, P.H., Chen, Y.T. and Chang, C. Interleukin-6 differentially regulates androgen receptor transactivation via PI3K-Akt, STAT3, and MAPK, three distinct signal pathways in prostate cancer cells. Biochem. Biophys. Res. Commun.
305 (2003) 462–469.
Article
PubMed
CAS
Google Scholar
Cronauer, M.V., Nessler-Menardi, C., Klocker, H., Maly, K., Hobisch, A., Bartsch, G. and Culig, Z. Androgen receptor protein is down-regulated by basic fibroblast growth factor in prostate cancer cells. Br. J. Cancer
82 (2000) 39–45.
Article
PubMed
CAS
Google Scholar
Lin, H.K., Yeh, S., Kang, H.Y. and Chang, C. Akt suppresses androgen-induced apoptosis by phosphorylating and inhibiting androgen receptor. Proc. Natl. Acad. Sci. USA
98 (2001) 7200–7205.
Article
PubMed
CAS
Google Scholar
Hu, Y.C., Yeh, S., Yeh, S.D., Sampson, E.R., Huang, J., Li, P., Hsu, C.L., Ting, H.J., Lin, H.K., Wang, L., Kim, E., Ni, J. and Chang, C. Functional domain and motif analyses of androgen receptor coregulator ARA70 and its differential expression in prostate cancer. J. Biol. Chem.
279 (2004) 33438–33446.
Article
PubMed
CAS
Google Scholar
Lin, H.K., Hu, Y.C., Yang, L., Altuwaijri, S., Chen, Y.T., Kang, H.Y. and Chang, C. Suppression versus induction of androgen receptor functions by the phosphatidylinositol 3-kinase/Akt pathway in prostate cancer LNCaP cells with different passage numbers. J. Biol. Chem.
278 (2003) 50902–50907.
Article
PubMed
CAS
Google Scholar
Wen, Y., Hu, M.C., Makino, K., Spohn, B., Bartholomeusz, G., Yan, D.H. and Hung, M.C. HER-2/neu promotes androgen-independent survival and growth of prostate cancer cells through the Akt pathway. Cancer Res.
60 (2000) 6841–6845.
PubMed
CAS
Google Scholar
Salas, T.R., Kim, J., Vakar-Lopez, F., Sabichi, A.L., Troncoso, P., Jenster, G., Kikuchi, A., Chen, S.Y., Shemshedini, L., Suraokar, M., Logothetis, C.J., DiGiovanni, J., Lippman, S.M. and Menter, D.G. Glycogen synthase kinase-3 beta is involved in the phosphorylation and suppression of androgen receptor activity. J. Biol. Chem.
279 (2004) 19191–19200.
Article
PubMed
CAS
Google Scholar
Liao, X., Thrasher, J.B., Holzbeierlein, J., Stanley, S. and Li, B. Glycogen synthase kinase-3beta activity is required for androgen-stimulated gene expression in prostate cancer. Endocrinology
145 (2004) 2941–2949.
Article
PubMed
CAS
Google Scholar
Gioeli, D., Black, B.E., Gordon, V., Spencer, A., Kesler, C.T., Eblen, S.T., Paschal, B.M. and Weber, M.J. Stress kinase signaling regulates androgen receptor phosphorylation, transcription, and localization. Mol. Endocrinol.
20 (2006) 503–515.
Article
PubMed
CAS
Google Scholar
Fu, M., Wang, C., Zhang, X. and Pestell, R.G. Acetylation of nuclear receptors in cellular growth and apoptosis. Biochem. Pharmacol.
68 (2004) 1199–1208.
Article
PubMed
CAS
Google Scholar
Ito, A., Kawaguchi, Y., Lai, C.H., Kovacs, J.J., Higashimoto, Y., Appella, E. and Yao, T.P. MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation. EMBO J.
21 (2002) 6236–6245.
Article
PubMed
CAS
Google Scholar
Cidlowski, J.A. and Cidlowski, N.B. Regulation of glucocorticoid receptors by glucocorticoids in cultured HeLa S3 cells. Endocrinology
109 (1981) 1975–1982.
Article
PubMed
CAS
Google Scholar
Dace, A., Zhao, L., Park, K.S., Furuno, T., Takamura, N., Nakanishi, M., West, B.L., Hanover, J.A. and Cheng, S. Hormone binding induces rapid proteasome-mediated degradation of thyroid hormone receptors. Proc. Natl. Acad. Sci. USA
97 (2000) 8985–8990.
Article
PubMed
CAS
Google Scholar
Zhu, J., Gianni, M., Kopf, E., Honore, N., Chelbi-Alix, M., Koken, M., Quignon, F., Rochette-Egly, C. and de The, H. Retinoic acid induces proteasome-dependent degradation of retinoic acid receptor alpha (RARalpha) and oncogenic RARalpha fusion proteins. Proc. Natl. Acad. Sci. USA
96 (1999) 14807–14812.
Article
PubMed
CAS
Google Scholar
Lange, C.A., Shen, T. and Horwitz, K.B. Phosphorylation of human progesterone receptors at serine-294 by mitogen-activated protein kinase signals their degradation by the 26S proteasome. Proc. Natl. Acad. Sci. USA
97 (2000) 1032–1037.
Article
PubMed
CAS
Google Scholar
Nawaz, Z., Lonard, D.M., Dennis, A.P., Smith, C.L. and O’Malley, B.W. Proteasome-dependent degradation of the human estrogen receptor. Proc. Natl. Acad. Sci. USA
96 (1999) 1858–1862.
Article
PubMed
CAS
Google Scholar
Gaughan, L., Logan, I.R., Neal, D.E. and Robson, C.N. Regulation of androgen receptor and histone deacatylase 1 by Mdm2-mediated ubiquitylation. Nucleic Acids Res.
33 (2005) 13–26.
Article
PubMed
CAS
Google Scholar
Tyagi, R.K., Lavrovsky, Y., Ahn, S.C., Song, C.S., Chatterjee, B. and Roy, A.K. Dynamics of intracellular movement and nucleocytoplasmic recycling of the ligand-activated androgen receptor in living cells. Mol. Endocrinol.
14 (2000) 1162–1174.
Article
PubMed
CAS
Google Scholar
Dai, J.L. and Burnstein, K.L. Two androgen response elements in the androgen receptor coding region are required for cell-specific up-regulation of receptor messenger RNA. Mol. Endocrinol.
10 (1996) 1582–1594.
Article
PubMed
CAS
Google Scholar
Black, B.E., Vitto, M.J., Gioeli, D., Spencer, A., Afshar, N., Conaway, M.R., Weber, M.J. and Paschal, B.M. Transient, ligand-dependent arrest of the androgen receptor in subnuclear foci alters phosphorylation and coactivator interactions. Mol. Endocrinol.
18 (2004) 834–850.
Article
PubMed
CAS
Google Scholar
Kinyamu, H.K., Chen, J. and Archer, T.K. Linking the ubiquitin-proteasome pathway to chromatin remodeling/modification by nuclear receptors. J. Mol. Endocrinol.
34 (2005) 281–297.
Article
PubMed
CAS
Google Scholar
Kang, Z., Jänne, O.A. and Palvimo, J.J. Coregulator recruitment and histone modifications in transcriptional regulation by the androgen receptor. Mol. Endocrinol.
18 (2004) 2633–2648.
Article
PubMed
CAS
Google Scholar
Fu, M., Wang, C., Reutens, A.T., Wang, J., Angeletti, R.H., Siconolfi-Baez, L., Ogryzko, V., Avantaggiati, M.L. and Pestell, R.G. p300 and p300/cAMP response element-binding protein-associated factor acetylate the androgen receptor at sites governing hormone-dependent transactivation. J. Biol. Chem.
275 (2000) 20853–20860.
Article
PubMed
CAS
Google Scholar
Daujat, S., Bauer, U.M., Shah, V., Turner, B., Berger, S. and Kouzarides, T. Crosstalk between CARM1 methylation and CBP acetylation on histone H3. Curr. Biol.
12 (2002) 2090–2097.
Article
PubMed
CAS
Google Scholar
Marshall, T.W., Link, K.A., Petre-Draviam, C.E. and Knudsen, K.E. Differential requirement of SWI/SNF for androgen receptor activity. J. Biol. Chem.
278 (2003) 30605–30613.
Article
PubMed
CAS
Google Scholar
Wang, Q., Sharma, D., Ren, Y. and Fondell, J.D. A coregulatory role for the TRAP-Mediator complex in androgen receptor-mediated gene expression. J. Biol. Chem.
277 (2002) 42852–42858.
Article
PubMed
CAS
Google Scholar
Huang, Z.Q., Li, J., Sachs, L.M., Cole, P.A. and Wong, J. A role for cofactor-cofactor and cofactor-histone interactions in targeting p300, SWI/SNF and Mediator for transcription. EMBO J.
22 (2003) 2146–2155.
Article
PubMed
CAS
Google Scholar
Lee, D.K. and Chang, C. Molecular communication between androgen receptor and general transcription machinery. J. Steroid Biochem. Mol. Biol.
84 (2003) 41–49.
Article
PubMed
CAS
Google Scholar
Svejstrup, J.Q. The RNA polymerase II transcription cycle: cycling through chromatin. Biochim. Biophys. Acta
1677 (2004) 64–73.
PubMed
CAS
Google Scholar
Kang, Z., Pirskanen, A., Jänne, O.A. and Palvimo, J.J. Involvement of proteasome in the dynamic assembley of the androgen receptor transcription complex. J. Biol. Chem.
277 (2002) 48366–48371.
Article
PubMed
CAS
Google Scholar
Hager, G.L., Nagaich, A.K., Johnson, T.A., Walker, D.A and John, S. Dynamics of nuclear receptor movement and transcription. Biochim. Biophys. Acta
1677 (2004) 46–51.
PubMed
CAS
Google Scholar
Dennis, A.P. and O’Malley, B.W. Rush hour at the promoter: how the ubiquitin-proteasome pathway polices the traffic flow of nuclear receptor-dependent transcription. J. Steroid Biochem. Mol. Biol.
93 (2005) 139–151.
Article
PubMed
CAS
Google Scholar
Lin, H.K., Altuwaijri, S., Lin, W.J., Kan, P.Y., Collins, L.L. and Chang, C. Proteasome activity is required for androgen receptor transcriptional activity via regulation of androgen receptor nuclear translocation and interaction with coregulators in prostate cancer cells. J. Biol. Chem.
277 (2002) 36570–36576.
Article
PubMed
CAS
Google Scholar
Makino, Y., Yoshida, T., Yogosawa, S., Tanaka, K., Muramatsu, M. and Tamura, T. Multiple mammalian proteasomal ATPases, but not proteasome itself, are associated with TATA-binding protein and a novel transcriptional activator, TIP 120. Genes Cells
4 (1999) 529–539.
Article
PubMed
CAS
Google Scholar
Gonzalez, F., Delahodde, A., Kodadek, T. and Johnston, S.A. Recruitment of a 19S proteasome subcomplex to an activated promoter. Science
296 (2002) 548–550.
Article
PubMed
CAS
Google Scholar
Ferdous, A., Kodadek, T. and Johnston, S.A. A nonproteolytic function of the 19S regulatory subunit of the 26S proteasome is required for efficient activated transcription by human RNA polymerase II. Biochemistry
41 (2002) 12798–12805.
Article
PubMed
CAS
Google Scholar
vom Baur, E., Zechel, C., Heery, D., Heine, M.J., Garnier, J.M., Vivat, V., Le Douarin, B., Gronemeyer, H., Chambon, P. and Losson, R. Differential ligand-dependent interactions between the AF-2 activating domain of nuclear receptors and the putative transcriptional intermediary factors mSUG1 and TIF1. EMBO J.
15 (1996) 110–124.
Google Scholar
Ikezoe, T., Yang, Y., Saito, T., Koeffler, H.P. and Taguchi, H. Proteasome inhibitor PS-341 down-regulates prostate-specific antigen (PSA) and induces growth arrest and apoptosis of androgen-dependent human prostate cancer LNCaP cells. Cancer Sci.
95 (2004) 271–275.
Article
PubMed
CAS
Google Scholar
Sun, L. and Chen, Z.J. The novel functions of ubiquitination in signaling. Curr. Opin. Cell Biol.
16 (2004) 119–126.
Article
PubMed
CAS
Google Scholar
Salghetti, S.E., Caudy, A.A., Chenoweth, J.G. and Tansey, W.P. Regulation of transcriptional activation domain function by ubiquitin. Science
293 (2001) 1651–1653.
Article
PubMed
CAS
Google Scholar
Burgdorf, S., Leister, P. and Scheidtmann, K.H. TSG101 interacts with apoptosis-antagonizing transcription factor and enhances androgen receptor-mediated transcription by promoting its monoubiquitination. J. Biol. Chem.
279 (2004) 17524–17534
Article
PubMed
CAS
Google Scholar
Conaway, R.C., Brower, C.S. and Conaway, J.W. Emerging roles of ubiquitin in transcriptional regulation. Science
296 (2002) 1254–1258.
Article
PubMed
CAS
Google Scholar
Pham, A.D. and Sauer, F. Ubiquitin-activating/conjugating activity of TAFII250, a mediator of activation of gene expression in Drosophila. Science
289 (2000) 2357–2360.
Article
PubMed
CAS
Google Scholar
Grossman, S.R., Deato, M.E., Brgnon, C., Chan, H.M., Kung, A.L., Tagami, H., Nakatani, Y. and Livingston, D.M. Polyubiquitination of p53 by a ubiquitin ligase activity of p300. Science
300 (2003) 342–344.
Article
PubMed
CAS
Google Scholar
Ismaili, N., Blind, R. and Garabedian, M.J. Stabilisation of the unliganded glucocorticoid receptor by TSG101. J. Biol. Chem.
280 (2005) 11120–11126.
Article
PubMed
CAS
Google Scholar
Tanner, T., Claessens, F. and Haelens, A. The hinge region of the androgen receptor plays a role in proteasome-mediated transcriptional activation. Ann. NY Acad. Sci.
1030 (2004) 587–592.
Article
PubMed
CAS
Google Scholar
Thomas, M., Dadgar, N., Aphale, A., Harrell, J.M., Kunkel, R., Pratt, W.B. and Lieberman, A.P. Androgen receptor acetylation site mutations cause trafficking defects, misfolding and aggregation similar to expanded glutamine tracts. J. Biol. Chem.
279 (2004) 8389–8395.
Article
PubMed
CAS
Google Scholar
Zhou, Z.X., Kemppainen, J.A. and Wilson, E.M. Identification of three proline-directed phosphorylation sites in the human androgen receptor. Mol. Endocrinol.
9 (1995) 605–615.
Article
PubMed
CAS
Google Scholar
Wong, H.Y., Burghoorn, J.A., Van Leeuwen, M., De Ruiter, P.E., Schippers, E., Blok, L.J., Li, K.W., Dekker, H.L., De Jong, L., Trapman, J., Grootegoed, J.A. and Brinkmann, A.O. Phosphorylation of androgen receptor isoforms. Biochem. J.
383 (2004) 267–276.
Article
PubMed
CAS
Google Scholar
Gioeli, D., Ficarro, S.B., Kwiek, J.J., Aaronson, D., Hancock, M., Catling, A.D., White, F.M., Christian, R.E., Settlage, R.E., Shabanowitz, J., Hunt, D.F. and Weber, M.J. Androgen receptor phosphorylation. Regulation and identification of the phosphorylation sites. J. Biol. Chem.
277 (2002) 29304–29314.
Article
PubMed
CAS
Google Scholar
Perissi, V., Aggarwal, A., Glass, C.K., Rose, D.W. and Rosenfeld, M.G. A corepressor/coactivator exchange complex required for transcriptional activation by nuclear receptors and other regulated transcription factors. Cell
116 (2004) 511–526.
Article
PubMed
CAS
Google Scholar
Zhang, J., Guenther, M.G., Carthew, R.W. and Lazar, M.A. Proteasomal regulation of nuclear receptor corepressor-mediated repression. Genes Dev.
12 (1998) 1775–1780.
PubMed
CAS
Google Scholar
Gao, X., Mohsin, S.K., Gatalica, Z., Fu, G., Sharma, P. and Nawaz, Z. Decreased expression of E6-associated protein in breast and prostate carcinomas. Endocrinology
146 (2005) 1707–1712.
Article
PubMed
CAS
Google Scholar
Jänne, O.A., Moilanen, A.M., Poukka, H., Rouleau, N., Karvonen, U., Kotaja, N., Häkli, M. and Palvimo, J.J. Androgen-receptor-interacting nuclear proteins. Biochem. Soc. Trans.
28 (2000) 401–405.
PubMed
Google Scholar
Stenoien, D.L., Cummings, C.J., Adams, H.P., Mancini, M.G., Patel, K., DeMartino, G.N., Marcelli, M., Weigel, N.L. and Mancini, M.A. Polyglutamine-expanded androgen receptors form aggregates that sequester heat shock proteins, proteasome components and SRC-1, and are suppressed by the HDJ-2 chaperone. Hum. Mol. Genet.
8 (1999) 731–741.
Article
PubMed
CAS
Google Scholar
Fan, M., Bigsby, R.M. and Nephew, K.P. The NEDD8 pathway is required for proteasome-mediated degradation of human estrogen receptor (ER)-alpha and essential for the antiproliferative activity of ICI 182,780 in ERalpha-positive breast cancer cells. Mol. Endocrinol.
17 (2003) 356–365.
Article
PubMed
CAS
Google Scholar
Abreu-Martin, M.T., Chari, A., Palladino, A.A., Craft, N.A. and Sawyers, C.L. Mitogen-activated protein kinase kinase kinase 1 activates androgen receptor-dependent transcription and apoptosis in prostate cancer. Mol. Cell. Biol.
19 (1999) 5143–5154.
PubMed
CAS
Google Scholar
Yeh, S., Lin, H.K., Kang, H.Y., Thin, T.H., Lin, M.F. and Chang, C. From HER2/Neu signal cascade to androgen receptor and its coactivators: a novel pathway by induction of androgen target genes through MAP kinase in prostate cancer cells. Proc. Natl. Acad. Sci. USA
96 (1999) 5458–5463.
Article
PubMed
CAS
Google Scholar
Darne, C., Veyssiere, G. and Jean, C. Phorbol ester causes ligand-independent activation of the androgen receptor. Eur. J. Biochem.
256 (1998) 541–549.
Article
PubMed
CAS
Google Scholar
Nazareth, L.V. and Weigel, N.L. Activation of the human androgen receptor through a protein kinase A signaling pathway. J. Biol. Chem.
271 (1996) 19900–19907.
Article
PubMed
CAS
Google Scholar
Veldscholte, J., Ris-Stalpers, C., Kuiper, G.G., Jenster, G., Berrevoets, C., Claassen, E., van Rooij, H.C., Trapman, J., Brinkmann, A.O. and Mulder, E. A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens. Biochem. Biophys. Res. Commun.
173 (1990) 534–540.
Article
PubMed
CAS
Google Scholar
Koivisto, P., Visakorpi, T. and Kallioniemi, O.P. Androgen receptor gene amplification: a novel molecular mechanism for endocrine therapy resistance in human prostate cancer. Scand. J. Clin. Lab. Invest. Suppl.
226 (1996) 57–63.
Article
PubMed
CAS
Google Scholar
Culig, Z., Hobisch, A., Cronauer, M.V., Cato, A.C.B., Hittmair, A., Radmayr, C., Eberle, J., Bartsch, G. and Klocker, H. Mutant androgen receptor detected in an advanced-stage prostatic carcinoma is activated by adrenal androgens and progesterone. Mol. Endocrinol.
7 (1993) 1541–1550.
Article
PubMed
CAS
Google Scholar
Veldscholte, J., Voorhorst-Ogink, M.M., Bolt-de Vries, J., van Rooij, H.C., Trapman, J. and Mulder, E. Unusual specificity of the androgen receptor in the human prostate tumor cell line LNCaP: high affinity for progestagenic and estrogenic steroids. Biochim. Biophys. Acta
1052 (1990) 187–194.
Article
PubMed
CAS
Google Scholar
Cha, T.L., Qiu, L., Chen, C.T., Wen, Y. and Hung, M.C. Emodin down-regulates androgen receptor and inhibits prostate cancer cell growth. Cancer Res.
65 (2005) 2287–2295.
Article
PubMed
CAS
Google Scholar
Pajonk, F., van Ophoven, A. and McBride, W.H. Hyperthermia-induced proteasome inhibition and loss of androgen receptor expression in human prostate cancer cells. Cancer Res.
65 (2005) 4836–4843.
Article
PubMed
CAS
Google Scholar
Schneekloth, J.S., Fonseca, F.N., Koldobskiy, M., Mandal, A., Deshaies, R., Sakamoto, K. and Crews, C.M. Chemical genetic control of protein levels: selective in vivo targeted degradation. J. Am. Chem. Soc.
126 (2004) 3748–3754.
Article
PubMed
CAS
Google Scholar
Prescott, J. and Coetzee, G.A. Molecular chaperones throughout the life cycle of androgen receptor. Cancer Lett.
231 (2006) 12–19.
Article
PubMed
CAS
Google Scholar
Vanaja, D.K., Mitchell, S.H., Toft, D.O. and Young, C.Y.F. Effect of geldanamycin on androgen receptor function and stability. Cell Stress Chaperones
7 (2002) 55–64.
Article
PubMed
CAS
Google Scholar
Kuduk, S.D., Harris, C.R., Zheng, F.F., Sepp-Lorenzino, L., Ouerfelli, Q., Rosen, N. and Danishefsky, S.J. Synthesis and evaluation of geldanamycin-testosterone hybrids. Bioorg. Med. Chem. Lett.
10 (2000) 1303–1306.
Article
PubMed
CAS
Google Scholar