Bown, D.P., Wilkinson, H.S. and Gatehouse, J.A. Differentially regulated inhibitor sensitive and insensitive protease genes from the phytophagous pest, Helicoverpa armigera, are members of complex multigene families. Insect Biochem. Mol. Biol.
27 (1997) 625–638.
Article
PubMed
CAS
Google Scholar
Gatehouse, L.N., Shannon, A.L., Burgess, E.P.J. and Christeller, J.T. Characterization of major midgut proteinase cDNAs from Helicoverpa armigera larvae and changes in gene expression in response to four proteinase inhibitors in the diet. Insect Biochem. Mol. Biol.
27 (1997) 929–944.
Article
PubMed
CAS
Google Scholar
Patankar, A.G., Giri, A.P., Harsulkar, A.M., Sainani, M.N., Deshpande, V.V., Ranjekar, P.K. and Gupta, V.S. Complexity in specificities and expression of Helicoverpa armigera gut proteinases explains polyphagous nature of the insect pest. Insect Biochem. Mol. Biol.
31 (2001) 453–464.
Article
PubMed
CAS
Google Scholar
Browne, L.B. and Raubenheimer, D. Ontogenic changes in the rate of ingestion and estimates of food consumption in fourth and fifth instar Helicoverpa armigera caterpillars. J. Insect Physiol.
49 (2003) 63–71.
Article
Google Scholar
Chougule, N.P., Giri, A.P., Sainani, M.N. and Gupta, V.S. Gene expression patterns of Helicoverpa armigera gut proteases. Insect Biochem. Mol. Biol.
35 (2005) 355–367.
Article
PubMed
CAS
Google Scholar
Bown, D.P., Wilkinson, H.S. and Gatehouse, J.A. Regulation of expression of genes encoding digestive proteases in the gut of a polyphagous lepidopteran larva in response to dietary protease inhibitors. Physiol. Entomol.
29 (2004), 278–290.
Article
CAS
Google Scholar
Huang, Y., Brown, M.R., Lee, T.D. and Crim, J.W. RF-amides isolated from the midgut of the corn earworm Helicoverpa zea, resemble pancreatic polypeptide. Insect Biochem. Mol. Biol.
28 (1998) 345–356.
Article
PubMed
CAS
Google Scholar
Harshini, S., Nachman, R.J. and Sreekumar, S. In vitro release of digestive enzymes by FMRF amide related neuropeptides and analogues in the lepidopteran insect Opisina arenosella (Walk.) Peptides
23 (2002) 1759–1763.
Article
PubMed
CAS
Google Scholar
Harshini, S., Nachman, R.J. and Sreekumar, S. Inhibition of digestive enzyme release by neuropeptides in larvae of Opisina arenosella (Lepidoptera: Cryptophasidae). Comp. Biochem. Physiol. — Part B
132 (2002) 353–358.
CAS
Google Scholar
Lopes, A.R., Juliano, M.A., Juliano, L. and Terra, W.R. Coevolution of insect trypsins and inhibitors. Arch. Insect Biochem. Physiol.
55 (2004) 140–152.
Article
PubMed
CAS
Google Scholar
Barrett, A.J. and Rawlings, N.D. Families and clans in serine peptidases. Arch. Biochem. Biophys.
318 (1995) 247–250.
Article
PubMed
CAS
Google Scholar
Krem, M.M. and Cera E.D. Molecular markers of serine protease evolution. EMBO J.
20 (2001) 3036–3045.
Article
PubMed
CAS
Google Scholar
Hegedus, D., Baldwin, D., O’Grady, M., Braun, L., Gleddie, S., Sharpe, A., Lydiate, D. and Erlandson, M. Midgut proteases from Mamestra configurata (Lepidoptera: Noctuidae) larvae: characterization, cDNA cloning and expressed sequence tag analysis. Arch. Insect Biochem. Physiol.
53 (2003) 30–47.
Article
PubMed
CAS
Google Scholar
Botos, I., Meyer, E., Nguyen, M., Swanson, S.M., Koomen, J.M., Russell, D.H. and Meyer, E.F., 2000. The structure of an insect chymotrypsin. J. Mol. Biol.
298 (2000) 895–901.
Article
PubMed
CAS
Google Scholar
Iengar, P. and Ramakrishnan, C. Knowledge based modeling of the serine protease triad into non-proteases. Protein Eng.
12 (1999) 649–655.
Article
PubMed
CAS
Google Scholar
Nishihira, J. and Tachikawa, H. Theoretical evaluation of a model of the catalytic triads of serine and cysteine proteases by an initio molecular orbital calculation. J. Theor. Biol.
196 (1999) 513–519.
Article
PubMed
CAS
Google Scholar
Beveridge, A.J. A theoretical study of the initial stages of catalysis in the aspartic proteinases. J. Mol. Chem. (Theochem)
453 (1998) 275–291.
Article
CAS
Google Scholar
Laskowski, M. Jr, and Qasim, M.A. What can the structures of enzyme-inhibitor complexes tell us about the structures of enzyme substrate complexes? Biochim. Biophys. Acta
1477 (2000) 324–337.
PubMed
CAS
Google Scholar
Krowarsch, D., Zakrzewska, M., Smalas, O.A. and Otlewski, J. Structure-function relationships in serine protease-bovine pancreatic trypsin inhibitor interaction. Protein Pept. Lett.
12 (2005) 1–5.
Article
Google Scholar
Kraut, J. Serine proteases: structure and mechanism of catalysis. Annu. Rev. Biochem.
46 (1977) 331–358.
Article
PubMed
CAS
Google Scholar
Dodson, G. and Wlodawer, A. Catalytic triad and their relatives. Trends Biochem. Sci.
23 (1998) 347–352.
Article
PubMed
CAS
Google Scholar
Polgar, L. The catalytic triad of serine peptidases. Cell. Mol. Life Sci.
62 (2005) 1–12.
Article
CAS
Google Scholar
Hunkapiller, M.W., Smallcombe, S.H., Hitaker, D.R. and Richards, J.H. Ionization behaviour of the histidine residue in the catalytic triad of serine proteases. J. Biol. Chem.
248 (1973) 8306–8308.
PubMed
CAS
Google Scholar
David, F., Bernard, A.M., Pierres, M. and Marguet, D. Identification of serine 624, aspartic acid 702 and histidine 734 as the catalytic triad residues of mouse dipeptidyl-peptidase IV (CD26): a member of the novel family of nonclassical serine hydrolases. J. Biol. Chem.
268 (1993) 17247–17252.
PubMed
CAS
Google Scholar
Ishida, T. and Kato, S. Role of asp102 in the catalytic relay system of serine proteases: a theoretical study. J. Am. Chem. Soc.
126 (2004) 7111–7118.
Article
PubMed
CAS
Google Scholar
Komiyama, T., VanderLugt, B., Fugere, M., Day, R., Kaufman, R.J. and Fuller, R.S. Optimization of protease-inhibitor interactions by randomizing adventitious contacts. Proc. Nat. Acad. Sci. USA
100 (2003) 8205–8210.
Article
PubMed
CAS
Google Scholar
Marana, S.R., Lopes, A.R., Juliano, L., Juliano, M.A., Ferreira, C. and Terra, W.R. Subsites of trypsin active site favor catalysis or substrate binding. Biochem. Biophys. Res. Comm.
290 (2002) 494–497.
Article
PubMed
CAS
Google Scholar
Fodor, K., Harmat, V., Hetenyi, C., Kardos, J., Antal, J., Perczel, A., Patthy, A., Katona, G. and Graf, L. Extended intermolecular interactions in a serine protease canonical inhibitor complex account for strong and highly specific inhibition. J. Mol. Biol.
350 (2005) 156–169.
Article
PubMed
CAS
Google Scholar
Atassi, M.Z., Manshouri, T. Design of peptide enzymes (pepzymes): Surface-simulation synthetic peptides that mimic the chymotrypsin and trypsin active sites exhibit the activity and specificity of the respective enzyme. Proc. Natl. Acad. Sci. USA.
90 (1993) 8282–8286.
Article
PubMed
Google Scholar
Kaiser, E.T., Lawrence, D.S. and Rokita, S.E. The chemical modification of enzyme specificity. Annu. Rev. Biochem.
54 (1985) 565–595.
Article
PubMed
CAS
Google Scholar
El-Hawrani, A.S., Sessions, R.B., Moreton, K.M. and Holbrook, J.J. Guided evolution of enzymes with new substrate specificities. J. Mol. Biol.
264 (1996) 97–110.
Article
PubMed
CAS
Google Scholar
Hung, S. and Hedstrom, L. Converting trypsin to elastase: substitution of the S1 site and adjacent loops reconstitutes esterase specificity but not amidase activity. Protein Eng.
11 (1998) 669–673.
Article
PubMed
CAS
Google Scholar
Takagi, H. and Takahashi, M. A new approach for alteration of protease functions: pro-sequence engineering. Appl. Microbiol. Biotechnol.
63 (2003) 1–9.
Article
PubMed
CAS
Google Scholar
Khamrui, S., Dasgupta, J., Dattagupta, J.K. and Sen, U. Single mutation at P1 of a chymotrypsin inhibitor changes it to a trypsin inhibitor: X-ray structural (2.15°A) and biochemical basis. Biochim. Biophys. Acta (2005) in press.
Corey, D.R., Willett, W.S., Coombs, G.S. and Craik, C.S. Trypsin Specificity Increased through Substrate-Assisted Catalysis. Biochemistry
34 (1995) 11521–11527.
Article
PubMed
CAS
Google Scholar
Higaki, J.N., Evnin, L.B. and Craik, C.S. Introduction of a Cysteine Protease Active Site into Trypsin. Biochemistry
28 (1989) 9256–9263.
Article
PubMed
CAS
Google Scholar
Tanaka, T. and Yada, R.Y. Redesign of catalytic center of an enzyme: aspartic to serine proteinase. Biochem. Biophys. Res. Commun.
323 (2004) 947–953.
Article
PubMed
CAS
Google Scholar
Telang, M.A., Giri, A.P., Sainani, M.N. and Gupta, V.S. Elastase-like proteinase of Helicoverpa armigera is responsible for inactivation of a proteinase inhibitor from chickpea. J. Insect Physiol.
51 (2005) 513–522.
Article
PubMed
CAS
Google Scholar
Valaitis, A.P., Augustin, S. and Clancy, K.M. Purification and characterization of the western spruce budworm larval midgut proteinases and comparison of gut activities of laboratory-reared and field-collected insects. Insect Biochem. Mol. Biol.
29 (1999) 405–415.
Article
PubMed
CAS
Google Scholar
Bown, D.P., Wilkinson, H.S., Jongsma, M.A. and Gatehouse, J.A. Characterization of cysteine proteinases responsible for digestive proteolysis in guts of larval western corn rootworm (Diabroticca virgifera) by expression in the yeast Pichia pastoris. Insect Biochem. Mol. Biol.
34 (2004) 305–320.
Article
PubMed
CAS
Google Scholar
Bown, D.P., Wilkinson, H.S. and Gatehouse, J.A. Midgut carboxypeptidase from Helicoverpa armigera (Lepidoptera: Noctuidae) larvae: enzyme characterisation, cDNA cloning and expression. Insect Biochem. Mol. Biol.
28 (1998) 739–749.
Article
PubMed
CAS
Google Scholar
Bayes, A., Sonnenschein, A., Daura, X., Vendrell, J. and Aviles, F.X. Procarboxypeptidase A from the insect pest Helicoverpa armigera and its derived enzyme. Eur. J. Biochem.
270 (2003) 3026–3035.
Article
PubMed
CAS
Google Scholar
Estebanez-Perpina, E., Bayes, A., Vendrell, J., Jongsma, M.A., Bown, D.P., Gatehouse, J.A., Huber, R., Bode, W., Aviles, F.X. and Reverter, D. Crystal structure of a novel mid-gut procarboxypeptidase from the cotton pest Helicoverpa armigera. J. Mol. Biol.
313 (2001) 629–638.
Article
PubMed
CAS
Google Scholar
Herrero, S., Combes, E., Van Oers, M.M., Vlak, J.M., de Maagd, R.A. and Beekwilder, J. Identification and recombinant expression of a novel chymotrypsin from Spodoptera exigua. Insect Biochem. Mol. Biol.
35 (2005) 1073–1082.
Article
PubMed
CAS
Google Scholar
Li, J., Choo, Y.M., Lee, K.S., Je, Y.H., Woo, S.D., Kim, I., Sohn, H.D. and Jin, B.R. A serine protease gene from the firefly, Pyrocoelia rufa: gene structure, expression, and enzyme activity. Biotechnol. Lett.
27 (2005) 1051–1057.
Article
PubMed
CAS
Google Scholar
Garcia-Olmedo, F., Salcedo, G., Sanchez-Monge, R., Gomez, L., Roys, J. and Carbonero, P. Plant proteinaceous inhibitors of proteases and amylases. Oxford Survey Plant Mol. Cell. Biol.
4 (1987) 275–334.
CAS
Google Scholar
Ryan, C.A. Proteinase inhibitors in plants: genes for improving defenses against insects and pathogens. Annu. Rev. Phytopathol.
28 (1990) 425–449.
Article
CAS
Google Scholar
Boulter, D. Insect pest control by copying nature using genetically engineered crops. Phytochemistry
34 (1993) 1453–1466.
Article
PubMed
CAS
Google Scholar
Carlini, C.R. and Grossi-de-Sa, M.F. Plant toxic proteins with insecticidal properties. A review on their potentialities as bioinsecticides. Toxicon
40 (2002) 1515–1539.
Article
PubMed
CAS
Google Scholar
Murdock, L.L. and Shade, R.E. Lectins and protease inhibitors as plant defenses against insects. J. Agric. Food Chem.
50 (2002) 6605–6611.
Article
PubMed
CAS
Google Scholar
Ferry, N., Edwards, M.G., Gatehouse, J.A. and Gatehouse, A.M.R. Plant-insect interactions: molecular approaches to insect resistance. Curr. Opin. Biotechnol.
15 (2004) 155–161.
Article
PubMed
CAS
Google Scholar
Giri, A.P., Chougule, N.P., Telang M.A. and Gupta, V.S. Engineering insect tolerant plants using plant defensive proteinase inhibitors. in: Recent Research Developments in Phytochemistry, (Pandalai, S.G. Ed) Research Signpost, India, vol. 8, 2005, 117–137.
Google Scholar
Laskowski, M. Jr. Protein inhibitors of serine proteinases — mechanism and function. Adv. Exp. Med. Biol.
199 (1986) 1–17.
PubMed
CAS
Google Scholar
Huntington, J.A., Read, R.J. and Carrell, R.W. Structure of a serpin-protease complex shows inhibition by deformation. Nature
407 (2000) 923–926.
Article
PubMed
CAS
Google Scholar
Hedstrom, L. Serine protease mechanism and specificity. Chem. Rev.
102 (2000) 4501–4523.
Article
CAS
Google Scholar
Plotnick, M.I., Mayne, L., Schechter, N.M. and Harvey, R. Distortion of the Active Site of Chymotrypsin Complexed with a Serpin. Biochemistry
35 (1996) 7586–7590.
Article
PubMed
CAS
Google Scholar
Broadway, R.M. and Duffey, S.S. Plant proteinase inhibitors: mechanism of action and effect on the growth and digestive physiology of larval Heliothis zea and Spodoptera exigua. J. Insect Physiol.
32 (1986) 827–833.
Article
CAS
Google Scholar
Hilder, V.A., Gatehouse, A.M.R., Sherman, S.F., Barker, R.F. and Boulter, D. A novel mechanism of insect resistance engineered into tobacco. Nature
330 (1987) 160–163.
Article
CAS
Google Scholar
Broadway, R.M. Plant dietary proteinase inhibitors alter complement of midgut proteases. Arch. Insect Biochem. Physiol.
32 (1996) 39–53.
Article
CAS
Google Scholar
Srinivasan, A., Giri, A.P., Harsulkar, A.M., Gatehouse, J.A. and Gupta, V.S. A Kunitz trypsin inhibitor from chickpea (Cicer arietinum L.) that exerts anti-metabolic effect on podborer (Helicoverpa armigera) larvae. Plant Mol. Biol.
57 (2005) 359–374.
Article
PubMed
CAS
Google Scholar
Jouanin, L., Bonade-Bottino, M., Girard, C., Morrot, G and Giband, M. Transgenic plants for insect resistance. Plant Sci.
131 (1998) 1–11.
Article
CAS
Google Scholar
Harsulkar, A.M., Giri, A.P., Patankar, A.G., Gupta, V.S., Sainani, M.N., Ranjekar, P.K. and Deshpande, V.V. Successive use of non-host plant proteinase inhibitors required for effective inhibition of Helicoverpa armigera gut proteinases and larval growth. Plant Physiol.
121 (1999) 497–506.
Article
PubMed
CAS
Google Scholar
deLeo, F. and Gallerani, R. The mustard trypsin inhibitor 2 affects the fertility of Spodoptera littoralis larvae fed on transgenic plants. Insect Biochem. Mol. Biol.
32 (2002) 489–496.
Article
CAS
Google Scholar
Telang, M.A., Srinivasan, A., Patankar, A.G., Harsulkar, A.M., Joshi, V.V., Damle, A., Deshpande, V.V., Sainani, M.N., Ranjekar, P.K., Gupta, G.P., Birah, A., Rani, S., Kachole, M., Giri, A.P and Gupta, V.S. Bitter gourd proteinase inhibitors: potential growth inhibitors of Helicoverpa armigera and Spodoptera litura. Phytochemistry
63 (2003) 643–652.
Article
PubMed
CAS
Google Scholar
Tamhane, V.A., Chougule, N.P., Giri, A.P., Dixit, A.R., Sainani, M.N. and Gupta, V.S. In vitro and in vivo effects of Capsicum annum proteinase inhibitors on Helicoverpa armigera gut proteinases. Biochim. Biophys. Acta
1722 (2005) 155–167.
Google Scholar
Giri, A.P., Harsulkar, A.M., Deshpande, V.V., Sainani, M.N., Gupta, V.S. and Ranjekar, P.K. Chickpea defensive proteinase inhibitors can be inactivated by podborer gut proteinases. Plant Physiol.
116 (1998) 393–401.
Article
CAS
Google Scholar
Giri, A.P., Harsulkar, A.M., Ku, M.S.B., Gupta, V.S., Deshpande, V.V., Ranjekar, P.K. and Franceschi, V.R. Identification of potent inhibitors of Helicoverpa armigera gut proteinases from winged bean seeds. Phytochemistry
63 (2003) 523–532.
Article
PubMed
CAS
Google Scholar
Ishimoto, M. and Chrispeels, M.J. Protective mechanism of the Mexican bean weevil against high levels of α-amylase inhibitor in the common bean. Plant Physiol.
111 (1996) 393–401.
Article
PubMed
CAS
Google Scholar
Oppert, B., Kramer, K.J., Johnson, D., Upton, S.J. and McGaughey, W.H. Luminal proteinases from Plodia interpunctella and the hydrolysis of Bacillus thuringiensis Cry1A(c) protoxin. Insect Biochem. Mol. Biol.
26 (1996) 571–583.
Article
PubMed
CAS
Google Scholar
Zhu, Y., Oppert, B., Kramer, K.J., McGaughey, W.H. and Dowdy, A.K. cDNAs for a chymotrypsinogen-like protein from two strains of Plodia interpunctella. Insect Biochem. Mol. Biol.
27 (1997) 1027–1037.
Article
PubMed
CAS
Google Scholar
Zhu, Y., Kramer, K.J., Oppert, B. and Dowdy, A.K. cDNAs of aminopeptidase-like protein genes from Plodia interpunctella strains with different susceptibilities to Bacillus thuringiensis toxins. Insect Biochem. Mol. Biol.
30 (2000) 215–224.
Article
PubMed
CAS
Google Scholar
Zhu, Y., Kramer, K.J., Dowdy, A.K. and Baker, J.E. Trypsinogen-like cDNAs and quantitative analysis of mRNA levels from the indianmeal moth, Plodia interpunctella. Insect Biochem. Mol. Biol.
30 (2000) 1027–1035.
Article
PubMed
CAS
Google Scholar
Zhu, Y., Oppert, B., Kramer, K.J., McGaughey, W.H. and Dowdy, A.K. cDNA sequence, mRNA expression and genomic DNA of trypsinogen from the indianmeal moth Plodia interpunctella. Insect Mol. Biol.
9 (2000) 19–26.
Article
PubMed
CAS
Google Scholar
Jongsma, M.A. and Bolter, C. The adaptation of insects to plant protease inhibitors. J. Insect Physiol.
43 (1997) 885–895.
Article
PubMed
CAS
Google Scholar
Paulillo, L.C.M.S., Lopes, A.R., Cristofoletti, P.T., Parra, J.R.P., Terra, W.R. and Silva-Filho, M.C. Changes in midgut endopeptidase activity of Spodoptera frugiperda (Lepidoptera: Noctuidae) are responsible for adaptation to soybean proteinase inhibitors. J. Econ. Entomol.
93 (2000) 892–896.
Article
PubMed
CAS
Google Scholar
Brito, L.O., Lopes, A.R., Parra, J.R.P., Terra, W.R. and Silva-Filho, M.C. Adaptation of tobacco budworm Heliothis virescens to proteinase inhibitors may be mediated by the synthesis of new proteinases. Comp. Biochem. Physiol.
128 (2001) 365–375.
Article
CAS
Google Scholar
Broadway, R.M. Dietary regulation of serine proteinases that are resistant to serine proteinase inhibitors. J. Insect Physiol.
43 (1997) 855–874.
Article
PubMed
CAS
Google Scholar
Girard, C., Metayer, M.L., Zaccomer, B., Bartlet, E., Williams, I., Bonade-Bottino, M., Pham-Delegue, M. and Jouanin, L. Growth simulation of beetle larvae reared on a transgenic oilseed rape expressing a cysteine proteinase inhibitor. J. Insect Physiol.
44 (1998) 263–270.
Article
PubMed
CAS
Google Scholar
Jongsma, M.A., Bakker, P.L., Peters, J., Bosch, D. and Stiekema, W.J. Adaptation of Spodoptera exigua larvae to plant proteinase inhibitors by induction of gut proteinase activity insensitive to inhibition. Proc. Nat. Acad. Sci. USA
92 (1995) 8041–8045.
Article
PubMed
CAS
Google Scholar
Mazumdar-Leighton, S. and Broadway, R.M. Identification of six chymotrypsin cDNAs from larval midguts of Helicoverpa zea and Agrotis ipsilon feeding on the soybean (Kunitz) trypsin inhibitor. Insect Biochem. Mol. Biol.
31 (2001) 633–644.
Article
PubMed
CAS
Google Scholar
Mazumdar-Leighton, S. and Broadway, R.M. Transcriptional induction of diverse midgut trypsins in larval Agrotis ipsilon and Helicoverpa zea feeding on the soybean trypsin inhibitor. Insect Biochem. Mol. Biol.
31 (2001) 645–657.
Article
PubMed
CAS
Google Scholar
Volpicella, M., Ceci, L.R., Cordewener, J., America, T., Gallerani, R., Bode, W., Jongsma, M.A. and Beekwilder, J. Properties of purified gut trypsin from Helicoverpa zea adapted to proteinase inhibitors. Eur. J. Biochem.
270 (2003) 10–19.
Article
PubMed
CAS
Google Scholar
Girard, C., Metayer, M.L., Bonade-Bottino, M., Pham-Delegue, M. and Jouanin, L. High level of resistance to proteinase inhibitors may be conferred by proteolytic cleavage in beetle larvae. Insect Biochem. Mol. Biol.
28 (1998) 229–137.
Article
PubMed
CAS
Google Scholar
Zhu-Salzman, K., Koiwa, H., Salzman, R.A., Shade, R.E. and Ahn, J.E. Cowpea bruchid Callosobruchus maculatus uses a three-component strategy to overcome a plant defensive cysteine protease inhibitor. Insect Biochem. Mol. Biol.
12 (2003) 135–145.
Article
CAS
Google Scholar
Moon, J., Salzman, R.A., Ahn, J.E., Koiwa, H. and Zhu-Salzman, K. Transcriptional regulation in cowpea bruchid guts during adaptation to a plant defence protease inhibitor. Insect Biochem. Mol. Biol.
13 (2004) 283–291.
Article
CAS
Google Scholar
Srinivasan, A., Chougule, N.P., Giri, A.P., Gatehouse, J.A. and Gupta, V.S. Podborer (Helicoverpa armigera Hübn.) does not show specific adaptations in gut proteinases to dietary Cicer arietinum Kunitz proteinase inhibitor. J. Insect Physiol.
51 (2005) 1268–1276.
Article
PubMed
CAS
Google Scholar
Ehrlich, P.R. and Raven P.H. Butterflies and plants: a study in coevolution. Evolution
18 (1964) 586–608.
Article
Google Scholar
Johnson, R., Narvaez, J., An, G. and Ryan, C.A. Expression of proteinase inhibitors I and II in transgenic tobacco plants: Effects on natural defense against Manduca sexta larvae. Proc. Natl. Acad. Sci. USA
86 (1989) 9871–9875.
Article
PubMed
CAS
Google Scholar
Lara, P., Ortego, F., Gonzalez-Hidalgo, E., Castanera, P., Carbonero, P. and Diaz, I. Adaptation of Spodoptera exigua (Lepidoptera: Noctuidae) to barley trypsin inhibitor BTI-CMe expressed in transgenic tobacco. Transgenic Res.
9 (2000) 169–178.
Article
PubMed
CAS
Google Scholar