Skip to main content

In-silico prediction and observations of nuclear matrix attachment

Abstract

The nuclear matrix is a functionally adaptive structural framework interior to the nuclear envelope. The nature and function of this nuclear organizer remains the subject of widespread discussion in the epigenetic literature. To draw this discussion together with a view to suggest a way forward we summarize the biochemical evidence for the modalities of DNA-matrix binding alongside the in-silico predictions. Concordance is exhibited at various, but not all levels. On the one hand, both the reiteration and sequence similarity of some elements of Matrix Attachment Regions suggest conservation. On the other hand, in-silico predictions suggest additional unique components. In bringing together biological and sequence evidence we conclude that binding may be hierarchical in nature, reflective of a biological role in replicating, transcribing and potentiating chromatin. Nuclear matrix binding may well be more complex than the widely accepted simple loop model.

Abbreviations

ChrClass:

a linear discriminant analysis approach to MAR prediction

CS:

chromosomal scaffold

CT:

chromosome territory

IUPAC:

International Union of Pure and Applied Chemists

LDA:

linear discriminant analysis

MAR:

matrix attachment region

MARFinder:

a cumulative probability MAR prediction tool

MARSCAN:

a MAR prediction tool to detect the MRS

MRS:

the bipartite MAR recognition signature

MARWIZ:

a commercial implementation of marfinder

MHC:

major histocompatibility complex

mRNP:

messenger ribonucleic acid protein

NM:

nuclear matrix

PWM:

position weight matrices

SIDD:

stress induced duplex destabilization

S/MAR:

scaffold/matrix attachment regions (synonymous with MAR)

SMARTest:

a MAR prediction tool developed commercially by Genomatix

Tw:

number of helical turns in a constrained DNA loop

Wr:

wumber of superhelical turns in a constrained loop

References

  1. 1.

    Boulikas, T. Nature of DNA sequences at the attachment regions of genes to the nuclear matrix. J. Cell. Biochem. 52 (1993) 14–22.

    PubMed  CAS  Article  Google Scholar 

  2. 2.

    Fawcett, D.W. On the occurrence of a fibrous lamina on the inner aspect of the nuclear envelope in certain cells of vertebrates. Am. J. Anat. 119 (1966) 129–145.

    PubMed  CAS  Article  Google Scholar 

  3. 3.

    He, D., Zeng, C. and Brinkley, B.R. Nuclear matrix proteins as structural and functional components of the mitotic apparatus. Int. Rev. Cytol. 162B (1995) 1–74.

    PubMed  CAS  Google Scholar 

  4. 4.

    Stadler, S., Schnapp, V., Mayer, R., Stein, S., Cremer, C., Bonifer, C., Cremer, T and Dietzel, S. The architecture of chicken chromosome territories changes during differentiation. BMC Cell Biol. 5 (2004) 44.

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Cremer, T. and Cremer, C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat. Rev. Genet. 2 (2001) 292–301.

    PubMed  CAS  Article  Google Scholar 

  6. 6.

    Gotzmann, J. and Foisner, R. Lamins and lamin-binding proteins in functional chromatin organization. Crit. Rev. Eukaryot. Gene Expr. 9 (1999) 257–265.

    PubMed  CAS  Google Scholar 

  7. 7.

    Mika, S. NMP-db Available from: http://cubic.bioc.columbia.edu/db/nmpdb/.

  8. 8.

    Capco, D.G., Wan, K.M and Penman, S. The nuclear matrix: three-dimensional architecture and protein composition. Cell 29 (1982) 847–858.

    PubMed  CAS  Article  Google Scholar 

  9. 9.

    Renz, A. and Fackelmayer, F.O. Purification and molecular cloning of the scaffold attachment factor B (SAF-B), a novel human nuclear protein that specifically binds to S/MAR-DNA. Nucleic Acids Res. 24 (1996) 843–849.

    PubMed  CAS  Article  Google Scholar 

  10. 10.

    Kas, E. and Laemmli, U.K. In vivo topoisomerase II cleavage of the Drosophila histone and satellite III repeats: DNA sequence and structural characteristics. Embo. J. 11 (1992) 705–716.

    PubMed  CAS  Google Scholar 

  11. 11.

    Dickinson, L.A., Joh, T., Kohwi, Y. and Kohwi-Shigematsu, T. A tissue-specific MAR/SAR DNA-binding protein with unusual binding site recognition. Cell 70 (1992) 631–645.

    PubMed  CAS  Article  Google Scholar 

  12. 12.

    Zong, R.T. and Scheuermann, R.H. Mutually exclusive interaction of a novel matrix attachment region binding protein and the NF-muNR enhancer repressor. Implications for regulation of immunoglobulin heavy chain expression. J. Biol. Chem. 270 (1995) 24010–24018.

    PubMed  CAS  Article  Google Scholar 

  13. 13.

    Yusufzai, T.M. and Felsenfeld, G. The 5′-HS4 chicken beta-globin insulator is a CTCF-dependent nuclear matrix-associated element. Proc. Natl. Acad. Sci. U. S. A. 101 (2004) 8620–8624.

    PubMed  CAS  Article  Google Scholar 

  14. 14.

    Steinert, P.M. and Roop, D.R. Molecular and cellular biology of intermediate filaments. Annu. Rev. Biochem. 57 (1988) 593–625.

    PubMed  CAS  Article  Google Scholar 

  15. 15.

    Rando, O.J., Zhao, K and Crabtree, G.R. Searching for a function for nuclear actin. Trends Cell Biol. 10 (2000) 92–97.

    PubMed  CAS  Article  Google Scholar 

  16. 16.

    He, D.C., Nickerson, J.A and Penman, S. Core filaments of the nuclear matrix. J. Cell Biol. 110 (1990) 569–580.

    PubMed  CAS  Article  Google Scholar 

  17. 17.

    Narayan, K.S., Steele, W.J., Smetana, K and Busch, H. Ultrastructural aspects of the ribonucleo-protein network in nuclei of Walker tumor and rat liver. Exp. Cell Res. 46 (1967) 65–77.

    PubMed  CAS  Article  Google Scholar 

  18. 18.

    Ma, H., Siegel, A.J and Berezney, R. Association of chromosome territories with the nuclear matrix. Disruption of human chromosome territories correlates with the release of a subset of nuclear matrix proteins. J. Cell Biol. 146 (1999) 531–542.

    PubMed  CAS  Article  Google Scholar 

  19. 19.

    Miralles, F., Ofverstedt, L.G., Sabri, N., Aissouni, Y., Hellman, U., Skoglund, U and Visa, N. Electron tomography reveals posttranscriptional binding of pre-mRNPs to specific fibers in the nucleoplasm. J. Cell Biol. 148 (2000) 271–282.

    PubMed  CAS  Article  Google Scholar 

  20. 20.

    Jackson, D.A. and Cook, P.R. Visualization of a filamentous nucleoskeleton with a 23 nm axial repeat. EMBO. J. 7 (1988) 3667–3677.

    PubMed  CAS  Google Scholar 

  21. 21.

    Earnshaw, W.C. and Heck, M.M. Localization of topoisomerase II in mitotic chromosomes. J. Cell Biol. 100 (1985) 1716–1725.

    PubMed  CAS  Article  Google Scholar 

  22. 22.

    Glazkov, M.V., Poltaraus, A.B. and Lebedeva, I.A. Nucleotide sequence of DNA isolated from protein cores of rosette-like structures (elementary chromomeres) of mouse interphase chromosomes. Genetika 30 (1994) 1146–1154.

    PubMed  CAS  Google Scholar 

  23. 23.

    Prusov, A.N., Poliakov, V., Zatsepina, O.V., Fais, D. and Chentsov Iu, S. Isolation of rosette-like structures from partially deproteinized chromatin in rat hepatocytes. Tsitologiia 27 (1985) 1026–1030.

    PubMed  CAS  Google Scholar 

  24. 24.

    van Driel, R. and Fransz, P. Nuclear architecture and genome functioning in plants and animals: what can we learn from both? Exp. Cell Res. 296 (2004) 86–90.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Ierardi, L.A., Moss, S.B. and Bellve, A.R. Synaptonemal complexes are integral components of the isolated mouse spermatocyte nuclear matrix. J. Cell Biol. 96 (1983) 1717–1726.

    PubMed  CAS  Article  Google Scholar 

  26. 26.

    Gautier, T., Robert-Nicoud, M., Guilly, M.N. and Hernandez-Verdun, D. Relocation of nucleolar proteins around chromosomes at mitosis. A study by confocal laser scanning microscopy. J. Cell Sci. 102 (Pt 4) (1992) 729–737.

    Google Scholar 

  27. 27.

    Hernandez-Verdun, D. and Gautier, T. The chromosome periphery during mitosis. Bioessays 16 (1994) 179–185.

    PubMed  CAS  Article  Google Scholar 

  28. 28.

    Berezney, R., Mortillaro, M.J., Ma, H., Wei, X. and Samarabandu, J. The nuclear matrix: a structural milieu for genomic function. Int. Rev. Cytol. 162A (1995) 1–65.

    PubMed  CAS  Article  Google Scholar 

  29. 29.

    Abney, J.R., Cutler, B., Fillbach, M.L., Axelrod, D. and Scalettar, B.A. Chromatin dynamics in interphase nuclei and its implications for nuclear structure. J. Cell Biol. 137 (1997) 1459–1468.

    PubMed  CAS  Article  Google Scholar 

  30. 30.

    Vogelstein, B., Pardoll, D.M. and Coffey, D.S. Supercoiled loops and eucaryotic DNA replicaton. Cell 22 (1980) 79–85.

    PubMed  CAS  Article  Google Scholar 

  31. 31.

    Ostermeier, G.C., Liu, Z., Martins, R.P., Bharadwaj, R.R., Ellis, J., Draghici, S. and Krawetz, S.A. Nuclear matrix association of the human beta-globin locus utilizing a novel approach to quantitative real-time PCR. Nucleic Acids Res. 31 (2003) 3257–3266.

    PubMed  CAS  Article  Google Scholar 

  32. 32.

    Mielke, C., Kohwi, Y., Kohwi-Shigematsu, T. and Bode, J. Hierarchical binding of DNA fragments derived from scaffold-attached regions: correlation of properties in vitro and function in vivo. Biochemistry 29 (1990) 7475–7485.

    PubMed  CAS  Article  Google Scholar 

  33. 33.

    Kramer, J.A., Adams, M.D., Singh, G.B., Doggett, N.A. and Krawetz, S.A. Extended analysis of the region encompassing the PRM1→PRM2→TNP2 domain: genomic organization, evolution and gene identification. J. Exp. Zool. 282 (1998) 245–253.

    PubMed  CAS  Article  Google Scholar 

  34. 34.

    Laborador, M. and Corces, V.G. Setting the boundaries of chromatin domains and nuclear organization. Cell 111 (2002) 151–154.

    Article  Google Scholar 

  35. 35.

    Williams, R.R. Transcription and the territory: the ins and outs of gene positioning. Trends Genet. 19 (2003) 298–302.

    PubMed  CAS  Article  Google Scholar 

  36. 36.

    Heun, P., Laroche, T., Shimada, K., Furrer, P and Gasser, S.M. Chromosome dynamics in the yeast interphase nucleus. Science 294 (2001) 2181–2186.

    PubMed  CAS  Article  Google Scholar 

  37. 37.

    Melcak, I., Cermanova, S., Jirsova, K., Koberna, K., Malinsky, J. and Raska, I. Nuclear pre-mRNA compartmentalization: trafficking of released transcripts to splicing factor reservoirs. Mol. Biol. Cell 11 (2000) 497–510.

    PubMed  CAS  Google Scholar 

  38. 38.

    Donev, R.M., Doneva, T.A., Bowen, W.R. and Sheer, D. HnRNP-A1 binds directly to double-stranded DNA in vitro within a 36 bp sequence. Mol. Cell. Biochem. 233 (2002) 181–185.

    PubMed  CAS  Article  Google Scholar 

  39. 39.

    Cremer, T., Kupper, K., Dietzel, S and Fakan, S. Higher order chromatin architecture in the cell nucleus: on the way from structure to function. Biol. Cell 96 (2004) 555–567.

    PubMed  CAS  Article  Google Scholar 

  40. 40.

    Krawetz, S.A., Draghici, S., Goodrich, R., Liu, Z and Ostermeier, G.C., In Silico and wet-bench identification of nuclear matrix attachment regions. in: Hypertension, Methods and Protocols (Fennell, J.P., Baker, A.H., Eds.), Vol. 108, Humana Press, 2004, 439–458.

  41. 41.

    Bode, J., Stengert-Iber, M., Kay, V., Schlake, T and Dietz-Pfeilstetter, A. Scaffold/matrix-attached regions: topological switches with multiple regulatory functions. Crit. Rev. Eukaryot. Gene Expr. 6 (1996) 115–138.

    PubMed  CAS  Google Scholar 

  42. 42.

    Kramer, J.A., McCarrey, J.R., Djakiew, D and Krawetz, S.A. Differentiation: the selective potentiation of chromatin domains. Development 125 (1998) 4749–4755.

    PubMed  CAS  Google Scholar 

  43. 43.

    Gerasimova, T.I. and Corces, V.G. Boundary and insulator elements in chromosomes. Curr. Opin. Genet. Dev. 6 (1996) 185–192.

    PubMed  CAS  Article  Google Scholar 

  44. 44.

    Cook, P.R. The organization of replication and transcription. Science 284 (1999) 1790–1795.

    PubMed  CAS  Article  Google Scholar 

  45. 45.

    Leonhardt, H., Rahn, H.P., Weinzierl, P., Sporbert, A., Cremer, T., Zink, D and Cardoso, M.C. Dynamics of DNA replication factories in living cells. J. Cell Biol. 149 (2000) 271–280.

    PubMed  CAS  Article  Google Scholar 

  46. 46.

    Strissel, P.L., Espinosa, R., III, Rowley, J.D and Swift, H. Scaffold attachment regions in centromere-associated DNA. Chromosoma 105 (1996) 122–133.

    PubMed  CAS  Article  Google Scholar 

  47. 47.

    Lammerding, J., Schulze, P.C., Takahashi, T., Kozlov, S., Sullivan, T., Kamm, R.D., Stewart, C.L and Lee, R.T. Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J. Clin. Invest. 113 (2004) 370–378.

    PubMed  CAS  Article  Google Scholar 

  48. 48.

    Vorlickova, M., Chladkova, J., Kejnovska, I., Fialova, M and Kypr, J. Guanine tetraplex topology of human telomere DNA is governed by the number of (TTAGGG) repeats. Nucleic Acids Res. 33 (2005) 5851–5860.

    PubMed  CAS  Article  Google Scholar 

  49. 49.

    Moyzis, R.K., Buckingham, J.M., Cram, L.S., Dani, M., Deaven, L.L., Jones, M.D., Meyne, J., Ratliff, R.L and Wu, J.R. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc. Natl. Acad. Sci. U.S.A. 85 (1988) 6622–6626.

    PubMed  CAS  Article  Google Scholar 

  50. 50.

    Lobov, I.B., Tsutsui, K., Mitchell, A.R and Podgornaya, O.I. Specificity of SAF-A and lamin B binding in vitro correlates with the satellite DNA bending state. J. Cell. Biochem. 83 (2001) 218–229.

    PubMed  CAS  Article  Google Scholar 

  51. 51.

    Frisch, M., Frech, K., Klingenhoff, A., Cartharius, K., Liebich, I and Werner, T. In silico prediction of scaffold/matrix attachment regions in large genomic sequences. Genome Res. 12 (2002) 349–354.

    PubMed  CAS  Article  Google Scholar 

  52. 52.

    Singh, G.B., Kramer, J.A and Krawetz, S.A. Mathematical model to predict regions of chromatin attachment to the nuclear matrix. Nucleic Acids Res. 25 (1997) 1419–1425.

    PubMed  CAS  Article  Google Scholar 

  53. 53.

    van Drunen, C.M., Sewalt, R.G., Oosterling, R.W., Weisbeek, P.J., Smeekens, S.C and van Driel, R. A bipartite sequence element associated with matrix/scaffold attachment regions. Nucleic Acids Res. 27 (1999) 2924–2930.

    PubMed  Article  Google Scholar 

  54. 54.

    Rudd, S., Frisch, M., Grote, K., Meyers, B.C., Mayer, K and Werner, T. Genome-wide in silico mapping of scaffold/matrix attachment regions in Arabidopsis suggests correlation of intragenic scaffold/matrix attachment regions with gene expression. Plant Physiol. 135 (2004) 715–722.

    PubMed  CAS  Article  Google Scholar 

  55. 55.

    Morgenstern, B., Dress, A and Werner, T. Multiple DNA and protein sequence alignment based on segment-to-segment comparison. Proc. Natl. Acad. Sci. U.S.A. 93 (1996) 12098–12103.

    PubMed  CAS  Article  Google Scholar 

  56. 56.

    Needleman, S.B. and Wunsch, C.D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48 (1970) 443–453.

    PubMed  CAS  Article  Google Scholar 

  57. 57.

    Quandt, K., Frech, K., Karas, H., Wingender, E and Werner, T. MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res. 23 (1995) 4878–4884.

    PubMed  CAS  Google Scholar 

  58. 58.

    Wolfertstetter, F., Frech, K., Herrmann, G and Werner, T. Identification of functional elements in unaligned nucleic acid sequences by a novel tuple search algorithm. Comput. Appl. Biosci. 12 (1996) 71–80.

    PubMed  CAS  Google Scholar 

  59. 59.

    Tarhio, J. and Ukkonen, E. Approximate Boyer-Moore String Matching. 2005; Available from: http://www.cs.hut.fi/:_tarhio/papers/abm.ps.gz.

  60. 60.

    RA Baeza-Yates, G.G. Fast text searching for regular expressions or automaton searching on tries. Journal of the A.C.M. 43 (1996) 915–936.

    Google Scholar 

  61. 61.

    Donev, R., Horton, R., Beck, S., Doneva, T., Vatcheva, R., Bowen, W.R and Sheer, D. Recruitment of heterogeneous nuclear ribonucleoprotein A1 in vivo to the LMP/TAP region of the major histocompatibility complex. J. Biol. Chem. 278 (2003) 5214–5226.

    PubMed  CAS  Article  Google Scholar 

  62. 62.

    Wang, H., Noordewier, M and Benham, C.J. Stress-induced DNA duplex destabilization (SIDD) in the E. coli genome: SIDD sites are closely associated with promoters. Genome Res. 14 (2004) 1575–1584.

    PubMed  CAS  Article  Google Scholar 

  63. 63.

    Bi, C. and Benham, C.J. WebSIDD: server for predicting stress-induced duplex destabilized (SIDD) sites in superhelical DNA. Bioinformatics 20 (2004) 1477–1479.

    PubMed  CAS  Article  Google Scholar 

  64. 64.

    Benham, C.J. and Bi, C. The analysis of stress-induced duplex destabilization in long genomic DNA sequences. J. Comput. Biol. 11 (2004) 519–543.

    PubMed  CAS  Article  Google Scholar 

  65. 65.

    Benham, C., Kohwi-Shigematsu, T and Bode, J. Stress-induced duplex DNA destabilization in scaffold/matrix attachment regions. J. Mol. Biol. 274 (1997) 181–196.

    PubMed  CAS  Article  Google Scholar 

  66. 66.

    Bode, J., Kohwi, Y., Dickinson, L., Joh, T., Klehr, D., Mielke, C and Kohwi-Shigematsu, T. Biological significance of unwinding capability of nuclear matrix-associating DNAs. Science 255 (1992) 195–197.

    PubMed  CAS  Google Scholar 

  67. 67.

    Vassetzky, Y.S., Bogdanova, A.N and Razin, S.V. Analysis of the chicken DNA fragments that contain structural sites of attachment to the nuclear matrix: DNA-matrix interactions and replication. J. Cell. Biochem. 79 (2000) 1–14.

    PubMed  CAS  Article  Google Scholar 

  68. 68.

    Girard-Reydet, C., Gregoire, D., Vassetzky, Y and Mechali, M. DNA replication initiates at domains overlapping with nuclear matrix attachment regions in the xenopus and mouse c-myc promoter. Gene 332 (2004) 129–138.

    PubMed  CAS  Article  Google Scholar 

  69. 69.

    Beaudouin, J., Gerlich, D., Daigle, N., Eils, R and Ellenberg, J. Nuclear envelope breakdown proceeds by microtubule-induced tearing of the lamina. Cell 108 (2002) 83–96.

    PubMed  CAS  Article  Google Scholar 

  70. 70.

    Benham, C.J. Stress-induced DNA duplex destabilization in transcriptional initiation. Pac. Symp. Biocomput. (2001) 103–114.

  71. 71.

    Benham, C.J. Torsional stress and local denaturation in supercoiled DNA. Proc. Natl. Acad. Sci. U.S.A. 76 (1979) 3870–3874.

    PubMed  CAS  Article  Google Scholar 

  72. 72.

    Fye, R.M. and Benham, C.J. Exact method for numerically analyzing a model of local denaturation in superhelically stressed DNA. Phys. Rev. E. 59 (1999) 3408–3426.

    CAS  Article  Google Scholar 

  73. 73.

    Chengpeng Bi, C.J.B. The approximate algorithm for analysis of the strand separation transition in super helical DNA using nearest neighbor energetics. Proceedings of the IEEE Computer Society Conference on Bioinformatics (2003) 460.

  74. 74.

    Rogozin, I.B., Glazko, G.V and Glazkov, M.V. Computer prediction of sites associated with various elements of the nuclear matrix. Brief. Bioinform. 1 (2000) 33–44.

    PubMed  CAS  Article  Google Scholar 

  75. 75.

    Glazko, G.V., Rogozin, I.B and Glazkov, M.V. Comparative study and prediction of DNA fragments associated with various elements of the nuclear matrix. Biochim. Biophys. Acta 1517 (2001) 351–364.

    PubMed  CAS  Google Scholar 

  76. 76.

    Baldi, P. and Brunak, S. Bioinformatics: the machine learning approach: Adaptive computation and machine learning. (Dietterich, T., Ed.), 2nd edition, MIT Press, Cambridge, Mass., 2001, 1–452.

    Google Scholar 

  77. 77.

    Kramer, J.A., Adams, M.D., Singh, G.B., Doggett, N.A and Krawetz, S.A. A matrix associated region localizes the human SOCS-1 gene to chromosome 16p13.13. Somat. Cell Mol. Genet. 24 (1998) 131–133.

    PubMed  CAS  Article  Google Scholar 

  78. 78.

    Singh, G.B. and Krawetz, S.A., Data Mining for Discovering Matrix Association Regions (MARs). in: Data mining and knowledge discovery: theory, toolsand technology II. (Dasarathy, B.V.E., Ed.), Proceedings of Spie, (2000) 330–341.

  79. 79.

    Purbowasito, W., Suda, C., Yokomine, T., Zubair, M., Sado, T., Tsutsui, K and Sasaki, H. Large-scale identification and mapping of nuclear matrix-attachment regions in the distal imprinted domain of mouse chromosome 7. DNA Res. 11 (2004) 391–407.

    PubMed  CAS  Article  Google Scholar 

  80. 80.

    Ubbink, J. and Odijk, T. Electrostatic-undulatory theory of plectonemically supercoiled DNA. Biophys. J. 76 (1999) 2502–2519.

    PubMed  CAS  Article  Google Scholar 

  81. 81.

    Belmont, A.S., Sedat, J.W and Agard, D.A. A three-dimensional approach to mitotic chromosome structure: evidence for a complex hierarchical organization. J. Cell Biol. 105 (1987) 77–92.

    PubMed  CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stephen A. Krawetz.

Additional information

Invited paper

All referenced websites were verified. URLs and their content are subject to change. The content referenced in this paper can be accessed using internet archive tools such as www.archive.org with the query restricted to November 2005.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Platts, A.E., Quayle, A.K. & Krawetz, S.A. In-silico prediction and observations of nuclear matrix attachment. Cell. Mol. Biol. Lett. 11, 191–213 (2006). https://doi.org/10.2478/s11658-006-0016-4

Download citation

Key words

  • Nuclear matrix
  • Matrix attachment regions
  • In-silico
  • Prediction
  • MARSCAN
  • MarFinder
  • MARWIZ
  • ChrClass
  • SMARTest
  • SIDD