Skip to main content


We’d like to understand how you use our websites in order to improve them. Register your interest.

The breakdown of bilayer lipid membranes by dendrimers


The BLM-system for studying the electrophysical properties of bilayer lipid membranes (BLM) was applied to investigate interactions between polyamidoamine (PAMAM) dendrimers and lipid bilayers. The cationic PAMAM G5 dendrimer effectively disrupted planar phosphatidylcholine membranes, while the hydroxyl PAMAM-OH G5 and carboxyl PAMAM G4.5 dendrimers had no significant effect on them.


  1. 1.

    Tomalia, D.A., Naylor, A.M. and Goddard III, W.A. Starburst dendrimers: Molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew. Chem. Int. Ed. 29 (1990) 138–175.

  2. 2.

    Newkome, R., Moorfield, C. and Vögtle, F. Dendritic Molecules-Concepts, Synthesis, Perspectives. VCH, Weinheim, 1996.

  3. 3.

    Cloninger, M.J. Biological applications of dendrimers. Curr. Op. Chem. Biol. 6 (2002) 742–748.

  4. 4.

    Purohit, G., Sakthivel, T. and Florence, A.T. Interaction of cationic partial dendrimers with charged and neutral liposomes. Int. J. Pharm. 214 (2001) 71–76.

  5. 5.

    Ottaviani, M.F., Turro, N.J., Jockusch, S. and Tomalia, D.A. Interactions between starburst dendrimers and mixed DMPC/DMPA-Na vesicles studied by the spin label and the spin probe techniques, supported by transmission electron microscopy. Langmuir 18 (2002) 2347–2357.

  6. 6.

    Loban, V.A., Drapeza, A.I., Khmelnitski, A.I., Lisichenok, A.N., Cherenkevich, S.N. and Vasilevskaya, N.V. Apparatus-program tools for studying electrophysical characteristics of planar bilayer membranes, in: Book of articles of XIV Conference “Sensor 2002”, Minsk, 2002, p. 252.

  7. 7.

    Tien, H.T., Barish, R.H., Gu, L.-Q. and Ottova, A.L. Supported bilayer lipid membranes as ion and molecular probes. Anal. Sci. 14 (1998) 3–14.

  8. 8.

    Tien, H.T and Ottova, A., Eds. Planar Lipid Bilayers (BLMs) and their Applications. Elsevier Sci., Amsterdam, New York, 2003.

  9. 9.

    Naumowicz, M., Petelska, A.D. and Figaszewski, Z.A. Impedance analysis of phosphatidylcholine-cholesterol system in bilayer lipid membranes. Electrochim. Acta 50 (2005) 2155–2161.

  10. 10.

    Cherenkevich, S.N., Khmelnitski, A.I., Drapeza, A.I. and Bakovich, I.A. Single ionic channels and macroscopic conductivity of bilayer lipid membranes. Biofizika 34 (1989) 45–48.

  11. 11.

    Weaver, J.C. and Chizmadzhev, Yu.A. Theory of electroporation, Bioelectrochem. Bioenerg. 41 (1996) 135–160.

  12. 12.

    Hianik, T., Kaatze, U., Sargent, D., Krivánek, R., Halstenberg, S., Pieper, W., Gaburjaková, J., Gaburjaková, M., Pooga, M. and Langel, U. A study of the interaction of some neuropeptides and their analogs with bilayer lipid membranes and liposomes. Bioelectrochem. Bioenerg. 42 (1997) 123–132.

  13. 13.

    Kakorin, S. and Neuman, E. Ionic conductivity of electroporated lipid bilayer membranes, Bioelectrochem. 56 (2002) 163–166.

  14. 14.

    Melikov, K.C., Frolov, V.A., Shcherbakov, A., Samsonov, A.V., Chizmadzhev, Y.A. and Chernomordik, L.V. Voltage-induced nonconductive pre-pores and metastable single pores in unmodified planar lipid bilayer. Biophys. J. 80 (2001) 1829–1836.

  15. 15.

    Karoonuthaisiri, N., Titiyevskiy, K. and Thomas, J.L. Destabilization of fatty acid-containing liposomes by polyamidoamine dendrimers. Colloids Surf. B: Biointerfaces 27 (2003) 365–375.

  16. 16.

    Klajnert, B. and Epand, R.M. PAMAM dendrimers and model membranes: differential scanning calorimetry studies. Int. J. Pharm. 305 (2005) 154–166.

  17. 17.

    Mecke, A., Uppuluri, S., Sassanella, T.M., Leeb, D.-K., Ramamoorthy, A., Baker Jr., J.R., Orr, B.G. and Banaszak Holl, M.M. Direct observation of lipid bilayer disruption by poly(amidoamine) dendrimers. Chem. Phys. Lipids 132 (2004) 3–14.

  18. 18.

    Zhang, Z.-Y. and Smith, B.D. High-generation polycationic dendrimers are unusually Effective at Disrupting Anionic Vesicles: Membrane Bending Model. Bioconjugate Chem. 11 (2000) 805–814.

  19. 19.

    MacDonald, P.M., Crowell, K.J., Franzin, C.M., Mitrakos, P. and Semchyschyn, D.J. Polyelectrolyte-induced domains in lipid bilayer membranes: the deuterium NMR perspective. Biochem. Cell Biol. 76 (1998) 452–464.

  20. 20.

    Svenson, S. and Tomalia, D.A. Dendrimers in biomedical applications — reflections on the field, Adv. Drug Deliv. Rev. 57 (2005) 2106–2129.

  21. 21.

    Shcharbin, D., Klajnert, B. and Bryszewska, M. The Effect of PAMAM dendrimers on human and bovine serum albumins at different pH and NaCl salt concentrations. J. Biomater. Sci., Polymer Edn. 16 (2005) 1081–1093.

  22. 22.

    Brzozowska, I. and Figaszewski, Z.A. The influence of pH on phosphatidylcholine monolayer at the air/aqueous solution interface. Colloids Surf. B: Biointerfaces 27 (2003) 303–309.

  23. 23.

    Quinn, P.J. and Dawson, R.M. The pH dependence of calcium adsorption onto anionic phospholipid monolayers. Chem. Phys. Lipids 8 (1972) 1–9.

Download references

Author information



Corresponding author

Correspondence to Maria Bryszewska.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shcharbin, D., Drapeza, A., Loban, V. et al. The breakdown of bilayer lipid membranes by dendrimers. Cell. Mol. Biol. Lett. 11, 242–248 (2006).

Download citation

Key words

  • PAMAM dendrimer
  • Planar bilayer lipid membrane
  • Conductivity
  • Voltammetry