Skip to main content

Brefeldin a decreases the activity of the general amino acid permease (GAP1) and the more specific systems for L-leucine uptake in Saccharomyces cerevisiae

Abstract

Brefeldin A is a commonly used antifungal agent that reversibly blocks protein transport from the endoplasmic reticulum to the Golgi complex. In this study, we aimed to characterize L-leucine uptake in Saccharomyces cerevisiae in the presence of brefeldin A. For this purpose, we used a synthetic medium, containing L-proline and the detergent SDS, which allows the agent to permeate into the yeast cell. The results obtained with a wild type strain and a gap1 mutant indicate that BFA causes either direct or indirect modification of the transport and/or processing of L-leucine permeases. The presence of BFA affects the kinetic parameter values for L-leucine uptake and decreases not only the uptake mediated by the general system (GAP1), but also that through the specific BAP2 (S1) and/or S2 systems.

Abbreviations

AAP:

amino acid permease

BAP2:

branched-chain amino acid permease 2

BFA:

brefeldin A

ER:

endoplasmic reticulum

GAP1:

general amino acid permease

GC:

Golgi complex

S1 and S2:

specific L-leucine transport systems

References

  1. 1.

    Grenson, M. Amino acid transporters in yeast: structure, function and regulation. Molecular Aspects of Transport Proteins. Elsevier, Amsterdam; New York. 1992, 219–245.

    Google Scholar 

  2. 2.

    Regenberg, B., Holmberg, S. and Kiellandt-Brandt, M. Functional analysis of amino acid permeases in yeast. XVth SMYTE (Small Meeting in Yeast Transport) Mexico, 1997, Abstr. 33.

  3. 3.

    Schreve, J. and Garett, J.M. The branched-chain amino acid permease gene of Saccharomyces cerevisiae, BAP2, encodes the high-affinity leucine permease (S1). Yeast 13 (1997) 435–439.

    PubMed  CAS  Article  Google Scholar 

  4. 4.

    Kotliar, N., Stella, C.A., Ramos, E.H. and Mattoon, J.R. L-leucine transport systems in Saccharomyces cerevisiae. Participation of GAP1, S1 and S2 transport systems. Cell. Mol. Biol. 40 (1994) 833–842.

    PubMed  CAS  Google Scholar 

  5. 5.

    Bennett, M.K. and Scheller, R.H. The molecular machinery for secretion is conserved from yeast to neurons. Proc. Natl. Acad. Sci. USA 90 (1993) 2559–2563.

    PubMed  CAS  Article  Google Scholar 

  6. 6.

    Roberg, K.J., Bickel, S., Rowley, N. and Kaiser, C.A. Control of amino acid permease sorting in the late secretory pathway of Saccharomyces cerevisiae by SEC13, LST4, LST7 and LST8. Genetics 147 (1997) 1569–1584.

    PubMed  CAS  Google Scholar 

  7. 7.

    Beck, T., Schmidt, A. and Hall, M.N. Starvation induces vacuolar targeting and degradation of the tryptophan permease in yeast. J. Cell. Biol. 146 (1999) 1227–1238.

    PubMed  CAS  Article  Google Scholar 

  8. 8.

    Chen, E.J. and Kaiser, C.A. Amino acids regulate the intracellular trafficking of the general amino acid permease of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 99 (2002) 14837–14842

    PubMed  CAS  Article  Google Scholar 

  9. 9.

    Umebayashi, K. and Nakano, A. Ergosterol is required for targeting of tryptophan permease to the yeast plasma membrane. J. Cell. Biol. 161 (2003) 1117–1131.

    PubMed  CAS  Article  Google Scholar 

  10. 10.

    Graham, T.R., Scott, P.A. and Emr, S.D. Brefeldin A reversibly blocks early but not late protein transport steps in the yeast secretory pathway. EMBO J. 12 (1993) 869–877.

    PubMed  CAS  Google Scholar 

  11. 11.

    Shah, N. and Klausner, R.D. Brefeldin A reversibly inhibits secretion in Saccharomyces cerevisiae. J. Biol. Chem. 268 (1993) 5345–5348.

    PubMed  CAS  Google Scholar 

  12. 12.

    Vogel, J.P., Lee, J.N., Kirsch, D.R., Rose, M.D. and Sztul, M.D. Brefeldin A causes a defect in secretion in Saccharomyces cerevisiae. J. Biol. Chem. 268 (1993) 3040–3043.

    PubMed  CAS  Google Scholar 

  13. 13.

    Crespo, P.M., Iglesias-Bartolome, R. and Daniotti, J.L. Ganglioside GD3 traffics from the trans-Golgi network to plasma membrane by a Rab11-independent and brefeldin A-insensitive exocytic pathway. J. Biol. Chem. 279 (2004) 47610–47618.

    PubMed  CAS  Article  Google Scholar 

  14. 14.

    Pannunzio, V.G., Burgos, H.I., Alonso, M., Mattoon, J.R., Ramos, E.H. and Stella, C.A. A Simple Chemical Method for Rendering Wild-Type Yeast Permeable to Brefeldin A That Does Not Require the Presence of an erg6 Mutation. J. Biomed. Biotechnol. 3 (2004) 150–155.

    Article  Google Scholar 

  15. 15.

    Grenson, M., Hou, C. and Crabeel, M. Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. IV. Evidence for a general amino acid permease. J. Bacteriol. 103 (1970) 770–777.

    PubMed  CAS  Google Scholar 

  16. 16.

    Shimoni, Y., Kurihara, T., Ravazzola, M., Amherdt, M., Orci, L. and Schekman, R. Lst1p and Sec24p cooperate in sorting of the plasma membrane ATPase into COPII vesicles in Saccharomyces cerevisiae. J. Cell Biol. 151 (2000) 973–984.

    PubMed  CAS  Article  Google Scholar 

  17. 17.

    Vallejo, C.G. and Serrano, R. Physiology of mutants with reduced expression of plasma membrane H+-ATPase. Yeast 5 (1989) 307–319.

    PubMed  CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Carlos A. Stella.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Alonso, M., Burgos, H.I., Pannunzio, V. et al. Brefeldin a decreases the activity of the general amino acid permease (GAP1) and the more specific systems for L-leucine uptake in Saccharomyces cerevisiae . Cell. Mol. Biol. Lett. 11, 256–263 (2006). https://doi.org/10.2478/s11658-006-0020-8

Download citation

Key words

  • Brefeldin A
  • Leucine permeases
  • Saccharomyces cerevisiae