Skip to main content

A proteomics study of the mung bean epicotyl regulated by brassinosteroids under conditions of chilling stress

Abstract

Mung bean CYP90A2 is a putative brassinosteroid (BR) synthetic gene that shares 77% identity with the Arabidopsis CPD gene. It was strongly suppressed by chilling stress. This implies that exogenous treatment with BR could allow the plant to recover from the inhibited growth caused by chilling. In this study, we used proteomics to investigate whether the mung bean epicotyl can be regulated by brassinosteroids under conditions of chilling stress. Mung bean epicotyls whose growth was initially suppressed by chilling partly recovered their ability to elongate after treatment with 24-epibrassinolde; 17 proteins down-regulated by this chilling were re-up-regulated. These up-regulated proteins are involved in methionine assimilation, ATP synthesis, cell wall construction and the stress response. This is consistent with the re-up-regulation of methionine synthase and S-adenosyl-L-methionine synthetase, since chilling-inhibited mung bean epicotyl elongation could be partially recovered by exogenous treatment with DL-methionine. This is the first proteome established for the mung bean species. The regulatory relationship between brassinosteroids and chilling conditions was investigated, and possible mechanisms are discussed herein.

Abbreviations

BR:

brassinosteroid

CPD:

constitutive photomorphogenesis and dwarfism

EBL:

24-epibrassinolide

IEF:

isoelectric focusing

References

  1. 1.

    Graham, D. and Patterson, B.D. Responses of plants to low, nonfreezing temperatures: proteins, metabolism, and acclimation. Annu. Rev. Plant Physiol. 33 (1982) 347–372.

    CAS  Article  Google Scholar 

  2. 2.

    Kawata, T. and Yoshida, S. Alterations in protein synthesis in vivo in chilling sensitive mung bean hypocotyls caused by chilling stress. Plant Cell Physiol. 29 (1988) 1423–1427.

    CAS  Google Scholar 

  3. 3.

    Chang, M.Y., Chen, S.L., Lee, C.F. and Chen, Y.M. Cold-acclimation and root temperature protection from chilling injury in chilling-sensitive mung bean (Vigna radiata L.) seedlings. Bot. Bull. Acad. Sin. 42 (2001) 53–60.

    Google Scholar 

  4. 4.

    Yang, M.T., Chen, S.L., Lin, C.Y. and Chen, Y.M. Chilling stress suppresses chloroplast development and nuclear gene expression in leaves of mung bean seedlings. Planta 221 (2005) 374–385.

    PubMed  CAS  Article  Google Scholar 

  5. 5.

    Szekeres, M., Nemeth, K., Koncz-Kalman, Z., Mathur, J., Kauschmann, A., Altmann, T., Redei, G.P., Nagy, F., Schell, J. and Koncz, C. Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85 (1996) 171–182.

    PubMed  CAS  Article  Google Scholar 

  6. 6.

    Clouse, S.D. and Sasse, J.M. Brassinosteroids: essential regulators of plant growth and development. Ann. Rev. Plant Physiol. Plant Mol. Biol. 49 (1998) 427–451.

    CAS  Article  Google Scholar 

  7. 7.

    Krishna, P. Brassinosteroids-mediated stress responses. J. Plant Growth Regul. 22 (2003) 289–297.

    PubMed  CAS  Article  Google Scholar 

  8. 8.

    Yu, J.Q., Zhou, Y.H., Ye, S.F. and Huang, L.F. 24-epibrassinolide and abscisic acid protect cucumber seedlings from chilling injury. J. Hort. Sci. Biotech. 77 (2002) 470–473.

    CAS  Google Scholar 

  9. 9.

    Konishi, H. and Komatsu, S. A proteomics approach to investigating promotive effects of brassinolide on lamina inclination and root growth in rice seedlings. Biol. Pharm. Bull. 26 (2003) 401–408.

    PubMed  CAS  Article  Google Scholar 

  10. 10.

    Harlow, E. and Lane, D. Antibodies: A laboratory manual. Cold Spring Harbor Laboratory, New York, 1988, 98–164.

    Google Scholar 

  11. 11.

    Sambrook, J. and Russell, D.W. Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory, New York, 2001.

    Google Scholar 

  12. 12.

    Gorg, A., Obermaier, C., Boguth, G., Harder, A., Scheibe, B. and Weiss, W. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21 (2000) 1037–1053.

    PubMed  CAS  Article  Google Scholar 

  13. 13.

    Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227 (1970) 213–216.

    Article  Google Scholar 

  14. 14.

    Juan, H.F., Chang, S.C., Huang, H.C. and Chen, S.T. A new application of microwave technology to proteomics. Proteomics 5 (2005) 840–842.

    PubMed  CAS  Article  Google Scholar 

  15. 15.

    Onnerfjord, P., Ekstrom, S., Bergquist, J., Nilsson, J., Laurell, T. and Marko-Varga, G. Homogeneous sample preparation for automated high throughput analysis with [MALDI] rapid commun. Mass Spectrom. 13 (1999) 315–322.

    CAS  Google Scholar 

  16. 16.

    Carr, S., Aebersold, R., Baldwin, M., Burlingame, A., Clauser, K. and Nesvizhskii, A. The need for guidelines in publication of peptide and protein identification data. Mol. Cell. Proteomics 3 (2004) 531–533.

    PubMed  CAS  Article  Google Scholar 

  17. 17.

    Phillips, A.L., Ward, D.A., Uknes, S., Appleford, N.E.J., Lange, T., Huttly, A.K., Gaskin, P., Graebe, J.E. and Hedden, P. Isolation and expression of three gibberellin 20-oxidase cDNA clones from Arabidopsis. Plant Physiol. 108 (1995) 1049–1057.

    PubMed  CAS  Article  Google Scholar 

  18. 18.

    Bancos, S., Nomura, T., Sato, T., Molnar, G., Bishop, G.J., Koncz, C., Yokota, T., Nagy, F. and Szekeres, M. Regulation of transcript level of the Arabidopsis cytochrome P450 genes involved in brassinosteroid biosynthesis. Plant Physiol. 130 (2002) 504–513.

    PubMed  CAS  Article  Google Scholar 

  19. 19.

    Rao, S.S.R., Vardhini, B.V., Sujatha, E. and Anuradha, S. Brassinosteroids — a new class of phytohormones. Curr. Sci. 82 (2002) 1239–1245.

    Google Scholar 

  20. 20.

    Tenhaken, R. and Thulke, O. Cloning of an enzyme that synthesizes a key nucleotide sugar precursor of hemicellulose biosynthesis from soybean: UDP-glucose dehydrogenase. Plant Physiol. 112 (1996) 1127–1134.

    PubMed  CAS  Article  Google Scholar 

  21. 21.

    Catterou, M., Dubois, F., Schaller, H., Aubanelle, L., Vilcot, B., Sangwan-Norreel, B.S. and Sangwan, R.S. Brassinosteroids, microtubules and cell elongation in Arabidopsis thaliana. II. effects of brassinosteroids on microtubules and cell elongation in the bull mutant. Planta 212 (2001) 673–683.

    PubMed  CAS  Article  Google Scholar 

  22. 22.

    Konish, H., and Komatsu, S. A proteomics approach to investigating promotive effects of brassinolide on lamina inclination and root growth in rice seedlings. Biol. Pharm. Bull. 26 (2003) 401–408.

    Article  Google Scholar 

  23. 23.

    Forsthoefel, N.R., Cushman, M.A.F. and Cushman, J.C. Posttranscriptional and posttranslational control of enolase expression in the facultative crassulacean acid metabolism plant Mesembryanthemum crystallinum L. Plant Physiol. 108 (1995) 1185–1195.

    PubMed  CAS  Article  Google Scholar 

  24. 24.

    Schumacher, K., Vafeados, D., McCarthy, M., Sze, H., Wilkins, T. and Chory, J. The Arabidopsis det3 mutant reveals a central role for the vacuolar H-ATPase in plant growth and development. Genes Dev. 13 (1999) 3259–3270.

    PubMed  CAS  Article  Google Scholar 

  25. 25.

    Dietz, K.J., Tavakoli, N., Kluge, C., Mimura, T., Sharma, S.S., Harris, G.C., Chardonnens, A.N. and Golldack, D. Significance of the V-type ATPase for the adaptation to stressful growth conditions and its regulation on the molecular and biochemical level. J. Exp. Bot. 52 (2001) 1969–1980.

    PubMed  CAS  Article  Google Scholar 

  26. 26.

    Konishi, H., Yamane, H., Maeshima, M. and Komatsu, S. Characterization of fructose-bisphosphate aldolase regulated by gibberellin in roots of rice seedling. Plant Mol. Biol. 56 (2004) 839–848.

    PubMed  CAS  Article  Google Scholar 

  27. 27.

    Breiteneder, H. and Radauer, C. A classification of plant food allergens. J. Allergy Clin. Immunol. 113 (2004) 821–829.

    PubMed  CAS  Article  Google Scholar 

  28. 28.

    Gallardo, K., Job, C., Groot, S.P.C., Puype, M., Demol, H., Vandekerckhove, J. and Job, D. Importance of methionine biosynthesis for Arabidopsis seed germination and seedling growth. Physiol. Planta 116 (2002) 238–247.

    CAS  Article  Google Scholar 

  29. 29.

    Joaquin, E., Pintor-Toro, J.A. and Pardo, J.M. Differential accumulation of S-adenosylmethionine synthetase transcripts in response to salt stress. Plant Mol. Biol. 25 (1994) 217–227.

    Article  Google Scholar 

  30. 30.

    Hesse, H. and Hoefgen, R. Molecular aspects of methionine biosynthesis. Trends Plant Sci. 8 (2003) 259–262.

    PubMed  CAS  Article  Google Scholar 

  31. 31.

    Cellarier, E., Durando, X., Vasson, M. P., Farges, M.C. Demiden, A., Maurizis, J.C., Madelmont, J.C. and Chollet, P. Methionine dependency and cancer treatment. Cancer Treat Rev. 29 (2003) 489–499.

    PubMed  CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Hsueh-Fen Juan or Yih-Ming Chen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Huang, B., Chu, C., Chen, S. et al. A proteomics study of the mung bean epicotyl regulated by brassinosteroids under conditions of chilling stress. Cell. Mol. Biol. Lett. 11, 264–278 (2006). https://doi.org/10.2478/s11658-006-0021-7

Download citation

Key words

  • Proteomics
  • Chilling
  • Brassinosteroid
  • Mung bean
  • Epicotyl