Siegel, R.M., Frederiksen, J.K., Zacharias, D.A., Chan, F.K., Johnson, M., Lynch, D., Tsien, R.Y. and Lenardo, M.J. Fas pre association required for apoptosis signaling and dominant inhibition by pathogenic mutations. Science
288 (2000) 2354–2357.
Article
PubMed
CAS
Google Scholar
Nagata, S. and Goldstein, P. The Fas death factor. Science
267 (1995) 1449–1456.
Article
PubMed
CAS
Google Scholar
Muller, M., Strand, S., Hug, H., Heinemann, E-M., Walczak, H., Hoffman, W.J., Stremmel, W., Krammer, P.H. and Galle, P.R. Drug-induced apoptosis in hepatoma cells is mediated by CD95 (APO-1/Fas) receptor/ligand system and involves activation of wild-type p53. J. Clin. Invest.
99 (1997) 403–413.
Article
PubMed
CAS
Google Scholar
Fulda, S., Sieverts, H., Friesen, C., Herr, I. and Debatin, K.M. The CD95 (APO-1/Fas) system mediates drug-induced apoptosis in neuroblastoma cells. Cancer. Res.
57 (1997) 3823–3829.
PubMed
CAS
Google Scholar
Fulda, S., Friesen, C., Los, M., Scaffidi, C., Mier, W., Benedict, M., Nuñez, G., Krammer, P.H., Peter, M.E. and Debatin, K.M. Betulinic acid triggers CD95 (APO-1/Fas)-and p53-independent apoptosis via activation of caspases in neuroectodermal tumors. Cancer. Res.
57 (1997) 4956–4965.
PubMed
CAS
Google Scholar
Chatterjee, D., Schmitz, I., Krueger, A., Yeung, K., Kirchhoff, S., Krammer, P.H., Peter, M.E., Wyche, J.H. and Pantazis, P. Induction of apoptosis in 9-nitrocamptothecin-treated DU145 human prostate carcinoma cells correlates with de novo synthesis of CD95 and CD95 ligand and down-regulation of c-FLIP. Cancer. Res.
61 (2001) 7148–7154.
PubMed
CAS
Google Scholar
Wesselborg, S., Engels, I.H., Rossmann, E., Los, M. and Schulze-Osthoff, K. Anticancer drugs induce caspase-8/FLICE activation and apoptosis in the absence of CD95 receptor/ligand interaction. Blood
93 (1999) 3053–3063.
PubMed
CAS
Google Scholar
Giordano, C., Stassi, G., DeMaría, R., Todaro, M., Richiusa, P., Papoff, G., Ruberti, G., Bagnasco, M., Testi, R. and Galluzzo, A. Potential involvement of Fas and its ligand in pathogenesis of Hashimoto’s thyroidits. Science
275 (1997) 960–963.
PubMed
CAS
Google Scholar
Ragnarsson, G.B., Mikaelsdottir, E.K., Vidarsson, H., Jonasson, J.G., Olafsdottir, K., Kristjansdottir, K., Kjartansson, J., Ogmundsdottir, H.M. and Rafnar, T. Intracellular Fas ligand in normal and malignant breast epithelium does not induce apoptosis in Fas-sensitive cells. Br. J. Cancer
83 (2000) 1715–1721.
Article
PubMed
CAS
Google Scholar
Hamann, K.J., Dorscheid, D.R., Ko, F.D., Conforti, A.E., Sperling, A.I., Rabe, K.F. and White, S.R. Expression of Fas (CD95) and FasL (CD95L) in human airway epithelium. Am. J. Respir. Cell. Mol. Biol.
19 (1998) 537–542.
PubMed
CAS
Google Scholar
Bennett M.W., O’Connell J., O’sullivan, G.C., Roche, D., Brady, C., Collins, J.K. and Shanahan, F. Fas ligand and Fas receptor are coexpressed in normal human esophageal epithelium: a potential mechanism of apoptotic epithelial turnover. Dis. Esophagus
12 (1999) 90–98.
Article
PubMed
CAS
Google Scholar
Gilbert, S., Loranger, A., Daigle, N. and Marceau, N. Simple epithelium keratins 8 and 18 provide resistance to Fas-mediated apoptosis. The protection occurs through a receptor-targeting modulation. J. Cell. Biol.
154 (2001) 763–773.
Article
PubMed
CAS
Google Scholar
Tan, K.H. and Hunziker, W. Compartmentalization of Fas and Fas ligand may prevent auto-or paracrine apoptosis in epithelial cells. Exp. Cell. Res.
284 (2003) 281–288.
Article
CAS
Google Scholar
Nisihara, T., Ushio, Y., Higuchi, H., Kayagaki, N., Yamaguchi, N., Soejima, K., Matsuo, S., Maeda, H., Eda, Y., Okumura, K. and Yagita, H. Humanization and epitope mapping of neutralizing anti-human Fas ligand monoclonal antibodies: Structural insights into Fas/Fas ligand interaction. J. Immunol.
167 (2001) 3266–3275.
PubMed
CAS
Google Scholar
Rothenberg, M.L. Topoisomerase I inhibitors-Review and update. Ann. Oncol.
8 (1997) 837–855.
Article
PubMed
CAS
Google Scholar
Deng, G.R. and Wu, R. Terminal transferase: use in the tailing of DNA and for in vitro mutagenesis. Meth. Enzymol.
100 (1983) 96–116.
Article
PubMed
CAS
Google Scholar
Laemmli, U.K. and Favre, M. Maturation of the head of bacteriophage T4 I DNA packaging events. J. Mol. Biol.
80 (1973) 575–599.
Article
PubMed
CAS
Google Scholar
Towbin, H.T., Staehlin, T. and Gordon, J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocelulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci. USA. 76 (1977) 4350–4354.
Article
Google Scholar
Vaishnaw, A.K., Orlinick, J.R., Chu, J.L., Krammer, P.H., Chao, M.V. and Elkon, K.B. The molecular basis for apoptotic defects in patients with CD95 (Fas/Apo-1) mutations. J. Clin. Invest.
103 (1999) 355–363.
Article
PubMed
CAS
Google Scholar
Iguchi, K., Hirano, K. and Ishida, R. Activation of caspase-3, proteolytic cleavage of DFF and No oligonucleosomal DNA fragmentation in apoptotic Molt-4 cells. J. Biochem.
131 (2002) 469–475.
PubMed
CAS
Google Scholar
Wang, A.M. and Mark, D.F. Quantitative PCR. In: PCR Protocols. A guide to methods and applications. Innis, M.A., Gelfand, D.H., Snisky, J.J., Withe, T.J., eds., Academic Press. San Diego, USA: 1990 pp 70–75
Google Scholar
Cremesti, A., Paris, F., Grassme, H., Holler, N., Tschopp, J., Fuks, Z., Gulbins, E. and Kolesnick, R. Ceramide enables fas to cap and kill. J. Biol. Chem.
276 (2001) 23954–23961.
Article
PubMed
CAS
Google Scholar
Schneider, P., Holler, N., Bodmer, J.L., Hahne, M., Frei, K., Fontana, A. and Tschopp, J., Conversion of membrane-bound Fas(CD95) ligand to its soluble form is associated with downregulation of its proapoptotic activity and loss of liver toxicity. J. Exp. Med.
187 (1998) 1205–12013.
Article
PubMed
CAS
Google Scholar
Schneider, P., Bodmer, J.L., Holler, N., Mattmann, C., Scuderi, P., Terskikh, A., Peitsch, M. C. and Tschopp, J. Characterization of Fas (Apo-1, CD95)-Fas ligand interaction. J. Biol. Chem.
272 (1997) 18827–18833.
Article
PubMed
CAS
Google Scholar
Henkler, F., Behrle, E., Dennehy, K.M., Wicovsky, A., Peters, N., Warnke, C., Pfizenmaier, K. and Wajant, H. The extracellular domains of FasL and Fas are sufficient for the formation of supramolecular FasL-Fas clusters of high stability. J. Cell. Biol.
168 (2005) 1087–10898.
Article
PubMed
CAS
Google Scholar
Orlinick, J.R., Elkon, K.B. and Chao, M.V. Separate domains of the human fas ligand dictate self-association and receptor binding. J. Biol. Chem.
272 (1997) 32221–32229.
Article
PubMed
CAS
Google Scholar