Skip to main content

Camptothecin induces the transit of FasL trimers to the cell surface in apoptotic HEp-2 cells


Fas ligand (L) is a membrane protein from the tumor necrosis factor (TNF) family. It induces apoptosis upon contact with its Fas/CD95/APO1 receptor. Trimerization of FasL on the surface of effector cells is essential in the binding of the Fas trimer of the target cells. The receptor then recruits an adaptor and caspase-like proteins which lead apoptosis. This paper reports on the fate of FasL in HEp-2 cells committed to apoptosis by induction with campthotecin. Our main results demonstrated that in non-apoptotic cells, FasL aggregates in the cytoplasm forming trimers of 120 kDa. Apoptosis increases the trimeric FasL species, but also induces its dissociation into monomers of 35 kDa. In conclusion, camptothecin appears to perturb the Fas and FasL segregation in the cytoplasm by promoting the transit of FasL to the cell surface, thus fostering a process of autocrine or paracrine apoptosis. FasL is trimerized prior to Fas/FasL complex formation, and after apoptosis, FasL undergoes an intense turnover.


  1. 1.

    Siegel, R.M., Frederiksen, J.K., Zacharias, D.A., Chan, F.K., Johnson, M., Lynch, D., Tsien, R.Y. and Lenardo, M.J. Fas pre association required for apoptosis signaling and dominant inhibition by pathogenic mutations. Science 288 (2000) 2354–2357.

    PubMed  CAS  Article  Google Scholar 

  2. 2.

    Nagata, S. and Goldstein, P. The Fas death factor. Science 267 (1995) 1449–1456.

    PubMed  CAS  Article  Google Scholar 

  3. 3.

    Muller, M., Strand, S., Hug, H., Heinemann, E-M., Walczak, H., Hoffman, W.J., Stremmel, W., Krammer, P.H. and Galle, P.R. Drug-induced apoptosis in hepatoma cells is mediated by CD95 (APO-1/Fas) receptor/ligand system and involves activation of wild-type p53. J. Clin. Invest. 99 (1997) 403–413.

    PubMed  CAS  Article  Google Scholar 

  4. 4.

    Fulda, S., Sieverts, H., Friesen, C., Herr, I. and Debatin, K.M. The CD95 (APO-1/Fas) system mediates drug-induced apoptosis in neuroblastoma cells. Cancer. Res. 57 (1997) 3823–3829.

    PubMed  CAS  Google Scholar 

  5. 5.

    Fulda, S., Friesen, C., Los, M., Scaffidi, C., Mier, W., Benedict, M., Nuñez, G., Krammer, P.H., Peter, M.E. and Debatin, K.M. Betulinic acid triggers CD95 (APO-1/Fas)-and p53-independent apoptosis via activation of caspases in neuroectodermal tumors. Cancer. Res. 57 (1997) 4956–4965.

    PubMed  CAS  Google Scholar 

  6. 6.

    Chatterjee, D., Schmitz, I., Krueger, A., Yeung, K., Kirchhoff, S., Krammer, P.H., Peter, M.E., Wyche, J.H. and Pantazis, P. Induction of apoptosis in 9-nitrocamptothecin-treated DU145 human prostate carcinoma cells correlates with de novo synthesis of CD95 and CD95 ligand and down-regulation of c-FLIP. Cancer. Res. 61 (2001) 7148–7154.

    PubMed  CAS  Google Scholar 

  7. 7.

    Wesselborg, S., Engels, I.H., Rossmann, E., Los, M. and Schulze-Osthoff, K. Anticancer drugs induce caspase-8/FLICE activation and apoptosis in the absence of CD95 receptor/ligand interaction. Blood 93 (1999) 3053–3063.

    PubMed  CAS  Google Scholar 

  8. 8.

    Giordano, C., Stassi, G., DeMaría, R., Todaro, M., Richiusa, P., Papoff, G., Ruberti, G., Bagnasco, M., Testi, R. and Galluzzo, A. Potential involvement of Fas and its ligand in pathogenesis of Hashimoto’s thyroidits. Science 275 (1997) 960–963.

    PubMed  CAS  Google Scholar 

  9. 9.

    Ragnarsson, G.B., Mikaelsdottir, E.K., Vidarsson, H., Jonasson, J.G., Olafsdottir, K., Kristjansdottir, K., Kjartansson, J., Ogmundsdottir, H.M. and Rafnar, T. Intracellular Fas ligand in normal and malignant breast epithelium does not induce apoptosis in Fas-sensitive cells. Br. J. Cancer 83 (2000) 1715–1721.

    PubMed  CAS  Article  Google Scholar 

  10. 10.

    Hamann, K.J., Dorscheid, D.R., Ko, F.D., Conforti, A.E., Sperling, A.I., Rabe, K.F. and White, S.R. Expression of Fas (CD95) and FasL (CD95L) in human airway epithelium. Am. J. Respir. Cell. Mol. Biol. 19 (1998) 537–542.

    PubMed  CAS  Google Scholar 

  11. 11.

    Bennett M.W., O’Connell J., O’sullivan, G.C., Roche, D., Brady, C., Collins, J.K. and Shanahan, F. Fas ligand and Fas receptor are coexpressed in normal human esophageal epithelium: a potential mechanism of apoptotic epithelial turnover. Dis. Esophagus 12 (1999) 90–98.

    PubMed  CAS  Article  Google Scholar 

  12. 12.

    Gilbert, S., Loranger, A., Daigle, N. and Marceau, N. Simple epithelium keratins 8 and 18 provide resistance to Fas-mediated apoptosis. The protection occurs through a receptor-targeting modulation. J. Cell. Biol. 154 (2001) 763–773.

    PubMed  CAS  Article  Google Scholar 

  13. 13.

    Tan, K.H. and Hunziker, W. Compartmentalization of Fas and Fas ligand may prevent auto-or paracrine apoptosis in epithelial cells. Exp. Cell. Res. 284 (2003) 281–288.

    Article  CAS  Google Scholar 

  14. 14.

    Nisihara, T., Ushio, Y., Higuchi, H., Kayagaki, N., Yamaguchi, N., Soejima, K., Matsuo, S., Maeda, H., Eda, Y., Okumura, K. and Yagita, H. Humanization and epitope mapping of neutralizing anti-human Fas ligand monoclonal antibodies: Structural insights into Fas/Fas ligand interaction. J. Immunol. 167 (2001) 3266–3275.

    PubMed  CAS  Google Scholar 

  15. 15.

    Rothenberg, M.L. Topoisomerase I inhibitors-Review and update. Ann. Oncol. 8 (1997) 837–855.

    PubMed  CAS  Article  Google Scholar 

  16. 16.

    Deng, G.R. and Wu, R. Terminal transferase: use in the tailing of DNA and for in vitro mutagenesis. Meth. Enzymol. 100 (1983) 96–116.

    PubMed  CAS  Article  Google Scholar 

  17. 17.

    Laemmli, U.K. and Favre, M. Maturation of the head of bacteriophage T4 I DNA packaging events. J. Mol. Biol. 80 (1973) 575–599.

    PubMed  CAS  Article  Google Scholar 

  18. 18.

    Towbin, H.T., Staehlin, T. and Gordon, J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocelulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci. USA. 76 (1977) 4350–4354.

    Article  Google Scholar 

  19. 19.

    Vaishnaw, A.K., Orlinick, J.R., Chu, J.L., Krammer, P.H., Chao, M.V. and Elkon, K.B. The molecular basis for apoptotic defects in patients with CD95 (Fas/Apo-1) mutations. J. Clin. Invest. 103 (1999) 355–363.

    PubMed  CAS  Article  Google Scholar 

  20. 20.

    Iguchi, K., Hirano, K. and Ishida, R. Activation of caspase-3, proteolytic cleavage of DFF and No oligonucleosomal DNA fragmentation in apoptotic Molt-4 cells. J. Biochem. 131 (2002) 469–475.

    PubMed  CAS  Google Scholar 

  21. 21.

    Wang, A.M. and Mark, D.F. Quantitative PCR. In: PCR Protocols. A guide to methods and applications. Innis, M.A., Gelfand, D.H., Snisky, J.J., Withe, T.J., eds., Academic Press. San Diego, USA: 1990 pp 70–75

    Google Scholar 

  22. 22.

    Cremesti, A., Paris, F., Grassme, H., Holler, N., Tschopp, J., Fuks, Z., Gulbins, E. and Kolesnick, R. Ceramide enables fas to cap and kill. J. Biol. Chem. 276 (2001) 23954–23961.

    PubMed  CAS  Article  Google Scholar 

  23. 23.

    Schneider, P., Holler, N., Bodmer, J.L., Hahne, M., Frei, K., Fontana, A. and Tschopp, J., Conversion of membrane-bound Fas(CD95) ligand to its soluble form is associated with downregulation of its proapoptotic activity and loss of liver toxicity. J. Exp. Med. 187 (1998) 1205–12013.

    PubMed  CAS  Article  Google Scholar 

  24. 24.

    Schneider, P., Bodmer, J.L., Holler, N., Mattmann, C., Scuderi, P., Terskikh, A., Peitsch, M. C. and Tschopp, J. Characterization of Fas (Apo-1, CD95)-Fas ligand interaction. J. Biol. Chem. 272 (1997) 18827–18833.

    PubMed  CAS  Article  Google Scholar 

  25. 25.

    Henkler, F., Behrle, E., Dennehy, K.M., Wicovsky, A., Peters, N., Warnke, C., Pfizenmaier, K. and Wajant, H. The extracellular domains of FasL and Fas are sufficient for the formation of supramolecular FasL-Fas clusters of high stability. J. Cell. Biol. 168 (2005) 1087–10898.

    PubMed  CAS  Article  Google Scholar 

  26. 26.

    Orlinick, J.R., Elkon, K.B. and Chao, M.V. Separate domains of the human fas ligand dictate self-association and receptor binding. J. Biol. Chem. 272 (1997) 32221–32229.

    PubMed  CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Rafael Herrera-Esparza.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Meza-Lamas, E., Bollain-Y-Goytia, JJ., Ramírez-Sandoval, R. et al. Camptothecin induces the transit of FasL trimers to the cell surface in apoptotic HEp-2 cells. Cell Mol Biol Lett 11, 299–311 (2006).

Download citation

Key words

  • FasL
  • Apoptosis
  • Oligomerization
  • Camptothecin