Skip to main content

The heterogeneity of ion channels in chromaffin granule membranes

Abstract

Chromaffin granules are involved in catecholamine synthesis and traffic in the adrenal glands. The transporting membrane proteins of chromaffin granules play an important role in the ion homeostasis of these organelles. In this study, we characterized components of the electrogenic 86Rb+ flux observed in isolated chromaffin granules. In order to study single channel activity, chromaffin granules from the bovine adrenal medulla were incorporated into planar lipid bilayers. Four types of cationic channel were found, each with a different conductance. The unitary conductances of the potassium channels are 360 ± 10 pS, 220 ± 8 pS, 152 ± 8 pS and 13 ± 3 pS in a gradient of 450/150 mM KCl, pH 7.0. A multiconductance potassium channel with a conductivity of 110 ± 8 pS and 31 ± 4 pS was also found. With the exception of the 13 pS conductance channel, all are activated by depolarizing voltages. One type of chloride channel was also found. It has a unitary conductance of about 250 pS in a gradient of 500/150 mM KCl, pH 7.0.

Abbreviations

BLM:

black lipid membrane technique

I:

single-channel current amplitude

KCG :

large conductance potassium channel

Po :

open-probability

U:

potential

Urev :

reversal potential

γ:

ion conductance

τo :

mean open lifetime

τo :

mean closed lifetime

References

  1. 1.

    Szewczyk, A. The intracellular potassium and chloride channels: properties, pharmacology and function. Mol. Membr. Biol. 15 (1998) 49–58.

    PubMed  CAS  Article  Google Scholar 

  2. 2.

    Kicinska, A., Debska, G., Kunz, W. and Szewczyk, A. Mitochondrial potassium and chloride channels. Acta Biochim. Pol. 47 (2000) 541–551.

    PubMed  CAS  Google Scholar 

  3. 3.

    Szewczyk, A. and Marban, E. Mitochondria: a new target for potassium channel openers? Trends Pharm. Sci. 20 (1999) 157–161.

    PubMed  CAS  Article  Google Scholar 

  4. 4.

    Szewczyk, A. and Wojtczak, L. Mitochondria as a pharmacological target. Pharm. Rev. 54 (2002) 101–127.

    PubMed  CAS  Article  Google Scholar 

  5. 5.

    O’Rourke, B. Evidence for mitochondrial K+ channels and their role in cardioprotection. Circulation Res. 94 (2004) 420–432.

    PubMed  CAS  Article  Google Scholar 

  6. 6.

    Facundo, H.T., Fornazari, M. and Kowaltowski, A.J. Tissue protection mediated by mitochondrial K+ channels. Biochim. Biophys. Acta 1762 (2006) 202–212.

    PubMed  CAS  Google Scholar 

  7. 7.

    Rahamimoff, R., DeRiemer, S.A., Sakmann, B., Stadler, H. and Yakir, N. Ion channels in synaptic vesicles from Torpedo electric organ. Proc. Nat. Acad. Sci. USA 85 (1988) 5310–5314.

    PubMed  CAS  Article  Google Scholar 

  8. 8.

    Thévenod, F. Ion channels in secretory granules of the pancreas and their role in exocytosis and release of secretory proteins. Am. J. Physiol. 283 (2002) C651–C672.

    Google Scholar 

  9. 9.

    Garlid, K.D. and Paucek, P. Mitochondrial potassium transport: the K+ cycle. Biochim. Biophys. Acta 1606 (2003) 23–41.

    PubMed  CAS  Article  Google Scholar 

  10. 10.

    Estevez, R. and Jentsch, T.J. CLC chloride channels: correlating structure with function. Curr. Op. Struct. Biol. 12 (2002) 531–539.

    CAS  Article  Google Scholar 

  11. 11.

    Parsons, S.M. Transport mechanisms in acetylcholine and monoamine storage. FASEB J. 14 (2000), 2423–2434.

    PubMed  CAS  Article  Google Scholar 

  12. 12.

    Arispe, N., Pollard, H.B. and Rojas, E. Calcium-independent K+-selective channel from chromaffin granule membranes. J. Membr. Biol. 130 (1992) 191–202.

    PubMed  CAS  Google Scholar 

  13. 13.

    Ashley, R.H., Brown, D.M., Apps, D.K. and Phillips, J.H. Evidence for a K+ channel in bovine chromaffine granule membranes: single-channel properties and possible bioenergetic significance. Eur. Biophys. J. 23 (1994) 263–275.

    PubMed  CAS  Article  Google Scholar 

  14. 14.

    Arispe, N., De Mazancourt, P. and Rojas, E. Direct control of a large conductance K+-selective channel by G-proteins in adrenal chromaffin granule membranes. J. Membr. Biol. 147 (1995) 109–119.

    PubMed  CAS  Google Scholar 

  15. 15.

    Pazoles, C.J. and Pollard, H.B. Evidence for stimulation of anion transport in ATP-evoked transmitter release from isolated secretory vesicles. J. Biol. Chem. 253 (1978) 3962–3969.

    PubMed  CAS  Google Scholar 

  16. 16.

    Pazoles, C.J., Creutz, C.E., Ramu, A. and Pollard, H.B. Permeant anion activation of MgATPase activity in chromaffin granules. Evidence for direct coupling of proton and anion transport. J. Biol. Chem. 255 (1980) 7863–7869.

    PubMed  CAS  Google Scholar 

  17. 17.

    Gualix, J., Alvarez, A.M., Pintor, J. and Miras-Portugal, M.T. Studies of chromaffin granule functioning by flow cytometry: transport of fluorescent epsilon-ATP and granular size increase induced by ATP. Receptors Channels 6 (1999) 449–461.

    PubMed  CAS  Google Scholar 

  18. 18.

    Szewczyk, A., Lobanov, N.A., Kicińska, A., Wójcik, G. and Nałęcz, M.J. ATP-sensitive K+ transport in adrenal chromaffin granules. Acta Neurobiol. Exp. 61 (2001) 1–12.

    CAS  Google Scholar 

  19. 19.

    Lobanov, N.A., Szewczyk, A., Wójcik, G., Nowotny, M. and Nałęcz, M.J. Effects of K+ channel inhibitors on potassium transport in bovine adrenal chromaffin granules. Biochem. Mol. Biol. Int. 41 (1997) 679–686.

    PubMed  CAS  Google Scholar 

  20. 20.

    Szewczyk, A., Lobanov, N.A., Nowotny, M. and Nałęcz, M.J. Interaction of sulfhydryl reagents with K+ transport in adrenal chromaffin granules. Acta Neurobiol. Exp. 57 (1997) 329–332.

    CAS  Google Scholar 

  21. 21.

    Hordejuk, R., Lobanov, N.A., Kicińska, A., Szewczyk, A. and Dołowy, K. pH modulation of large conductance potassium channel from adrenal chromaffin granules. Mol. Membr. Biol. 21 (2004) 1–7.

    Article  CAS  Google Scholar 

  22. 22.

    Brocklehurst, K.W. and Pollard, H.B. Cell biology of secretion. in: Peptide Hormone Secretion. A Practical Approach, (Hutton J.C., and Siddle, K. Eds.), IRL, Oxford, New York, Tokyo, 1990, 233–255.

    Google Scholar 

  23. 23.

    Garty, H., Rudy, B. and Karlish, S.J.D. A simple and sensitive procedure for measuring isotope fluxes through ionspecific channels in heterogeneous populations of membrane vesicles. J. Biol. Chem. 258 (1983) 13094–13099.

    PubMed  CAS  Google Scholar 

  24. 24.

    Garty, H. and Karlish, S.J.D. Ion channel-mediated fluxes in membrane vesicles: selective amplification of isotope uptake by electrical diffusion potential. Meth. Enzymol. 172 (1989) 155–164.

    PubMed  CAS  Google Scholar 

  25. 25.

    Szabo, I., Bock, J., Jekle, A., Soddemann M., Adams, C., Lang, F., Zoratti, M. and Gulbins, E. A novel potassium channel in lymphocyte mitochondria. J. Biol. Chem. 280 (2005) 12790–12798.

    PubMed  CAS  Article  Google Scholar 

  26. 26.

    Inoue, I., Nagase, H., Kishi, K. and Higuti, T. ATP-sensitive K+ channel in the mitochondrial inner membrane. Nature 352 (1991) 244–247.

    PubMed  CAS  Article  Google Scholar 

  27. 27.

    Siemen, D., Loupatatzis, C., Borecky, J., Gulbins, E. and Lang, F. Ca2+-activated K channel of the BK-type in the inner mitochondrial membrane of a human glioma cell line. Biochem. Biophys. Res. Commun. 257 (1999) 549–554.

    PubMed  CAS  Article  Google Scholar 

  28. 28.

    Fernandez-Salas, E., Suh, K.S., Speransky, V.V., Bowers, W.L., Levy, J.M., Adams, T., Pathak, K.R., Edwards, L.E., Hayes, D.D., Cheng, C., Steven, A.C., Weinberg, W.C. and Yusupa, S.H. mtCLIC/CLIC4, an organellular chloride channel protein, is increased by DNA damage and participates in the apoptotic response to p53. Mol. Cell Biol. 22 (2002) 3610–3620.

    PubMed  CAS  Article  Google Scholar 

  29. 29.

    Loewen, M.E. and Forsyth, G.W. Structure and function of CLCA proteins. Physiol. Rev. 85 (2005) 1061–1092.

    PubMed  CAS  Article  Google Scholar 

  30. 30.

    El-Maghraby, M. and Lever, J.D. Typification and differentiation of medullary cells in the developing rat adrenal. A histochemical and electron microscopic study. J. Anat. 131 (1980) 103–120.

    PubMed  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Dołowy.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hordejuk, R., Szewczyk, A. & Dołowy, K. The heterogeneity of ion channels in chromaffin granule membranes. Cell Mol Biol Lett 11, 312–325 (2006). https://doi.org/10.2478/s11658-006-0027-1

Download citation

Key words

  • Chromaffin granule
  • Intracellular channel
  • Potassium channel
  • Chloride channel
  • Black lipid membrane