Szewczyk, A. The intracellular potassium and chloride channels: properties, pharmacology and function. Mol. Membr. Biol.
15 (1998) 49–58.
Article
PubMed
CAS
Google Scholar
Kicinska, A., Debska, G., Kunz, W. and Szewczyk, A. Mitochondrial potassium and chloride channels. Acta Biochim. Pol.
47 (2000) 541–551.
PubMed
CAS
Google Scholar
Szewczyk, A. and Marban, E. Mitochondria: a new target for potassium channel openers? Trends Pharm. Sci.
20 (1999) 157–161.
Article
PubMed
CAS
Google Scholar
Szewczyk, A. and Wojtczak, L. Mitochondria as a pharmacological target. Pharm. Rev.
54 (2002) 101–127.
Article
PubMed
CAS
Google Scholar
O’Rourke, B. Evidence for mitochondrial K+ channels and their role in cardioprotection. Circulation Res.
94 (2004) 420–432.
Article
PubMed
CAS
Google Scholar
Facundo, H.T., Fornazari, M. and Kowaltowski, A.J. Tissue protection mediated by mitochondrial K+ channels. Biochim. Biophys. Acta
1762 (2006) 202–212.
PubMed
CAS
Google Scholar
Rahamimoff, R., DeRiemer, S.A., Sakmann, B., Stadler, H. and Yakir, N. Ion channels in synaptic vesicles from Torpedo electric organ. Proc. Nat. Acad. Sci. USA
85 (1988) 5310–5314.
Article
PubMed
CAS
Google Scholar
Thévenod, F. Ion channels in secretory granules of the pancreas and their role in exocytosis and release of secretory proteins. Am. J. Physiol.
283 (2002) C651–C672.
Google Scholar
Garlid, K.D. and Paucek, P. Mitochondrial potassium transport: the K+ cycle. Biochim. Biophys. Acta
1606 (2003) 23–41.
Article
PubMed
CAS
Google Scholar
Estevez, R. and Jentsch, T.J. CLC chloride channels: correlating structure with function. Curr. Op. Struct. Biol.
12 (2002) 531–539.
Article
CAS
Google Scholar
Parsons, S.M. Transport mechanisms in acetylcholine and monoamine storage. FASEB J.
14 (2000), 2423–2434.
Article
PubMed
CAS
Google Scholar
Arispe, N., Pollard, H.B. and Rojas, E. Calcium-independent K+-selective channel from chromaffin granule membranes. J. Membr. Biol.
130 (1992) 191–202.
PubMed
CAS
Google Scholar
Ashley, R.H., Brown, D.M., Apps, D.K. and Phillips, J.H. Evidence for a K+ channel in bovine chromaffine granule membranes: single-channel properties and possible bioenergetic significance. Eur. Biophys. J.
23 (1994) 263–275.
Article
PubMed
CAS
Google Scholar
Arispe, N., De Mazancourt, P. and Rojas, E. Direct control of a large conductance K+-selective channel by G-proteins in adrenal chromaffin granule membranes. J. Membr. Biol.
147 (1995) 109–119.
PubMed
CAS
Google Scholar
Pazoles, C.J. and Pollard, H.B. Evidence for stimulation of anion transport in ATP-evoked transmitter release from isolated secretory vesicles. J. Biol. Chem.
253 (1978) 3962–3969.
PubMed
CAS
Google Scholar
Pazoles, C.J., Creutz, C.E., Ramu, A. and Pollard, H.B. Permeant anion activation of MgATPase activity in chromaffin granules. Evidence for direct coupling of proton and anion transport. J. Biol. Chem.
255 (1980) 7863–7869.
PubMed
CAS
Google Scholar
Gualix, J., Alvarez, A.M., Pintor, J. and Miras-Portugal, M.T. Studies of chromaffin granule functioning by flow cytometry: transport of fluorescent epsilon-ATP and granular size increase induced by ATP. Receptors Channels
6 (1999) 449–461.
PubMed
CAS
Google Scholar
Szewczyk, A., Lobanov, N.A., Kicińska, A., Wójcik, G. and Nałęcz, M.J. ATP-sensitive K+ transport in adrenal chromaffin granules. Acta Neurobiol. Exp.
61 (2001) 1–12.
CAS
Google Scholar
Lobanov, N.A., Szewczyk, A., Wójcik, G., Nowotny, M. and Nałęcz, M.J. Effects of K+ channel inhibitors on potassium transport in bovine adrenal chromaffin granules. Biochem. Mol. Biol. Int.
41 (1997) 679–686.
PubMed
CAS
Google Scholar
Szewczyk, A., Lobanov, N.A., Nowotny, M. and Nałęcz, M.J. Interaction of sulfhydryl reagents with K+ transport in adrenal chromaffin granules. Acta Neurobiol. Exp.
57 (1997) 329–332.
CAS
Google Scholar
Hordejuk, R., Lobanov, N.A., Kicińska, A., Szewczyk, A. and Dołowy, K. pH modulation of large conductance potassium channel from adrenal chromaffin granules. Mol. Membr. Biol.
21 (2004) 1–7.
Article
CAS
Google Scholar
Brocklehurst, K.W. and Pollard, H.B. Cell biology of secretion. in: Peptide Hormone Secretion. A Practical Approach, (Hutton J.C., and Siddle, K. Eds.), IRL, Oxford, New York, Tokyo, 1990, 233–255.
Google Scholar
Garty, H., Rudy, B. and Karlish, S.J.D. A simple and sensitive procedure for measuring isotope fluxes through ionspecific channels in heterogeneous populations of membrane vesicles. J. Biol. Chem.
258 (1983) 13094–13099.
PubMed
CAS
Google Scholar
Garty, H. and Karlish, S.J.D. Ion channel-mediated fluxes in membrane vesicles: selective amplification of isotope uptake by electrical diffusion potential. Meth. Enzymol.
172 (1989) 155–164.
PubMed
CAS
Google Scholar
Szabo, I., Bock, J., Jekle, A., Soddemann M., Adams, C., Lang, F., Zoratti, M. and Gulbins, E. A novel potassium channel in lymphocyte mitochondria. J. Biol. Chem.
280 (2005) 12790–12798.
Article
PubMed
CAS
Google Scholar
Inoue, I., Nagase, H., Kishi, K. and Higuti, T. ATP-sensitive K+ channel in the mitochondrial inner membrane. Nature
352 (1991) 244–247.
Article
PubMed
CAS
Google Scholar
Siemen, D., Loupatatzis, C., Borecky, J., Gulbins, E. and Lang, F. Ca2+-activated K channel of the BK-type in the inner mitochondrial membrane of a human glioma cell line. Biochem. Biophys. Res. Commun.
257 (1999) 549–554.
Article
PubMed
CAS
Google Scholar
Fernandez-Salas, E., Suh, K.S., Speransky, V.V., Bowers, W.L., Levy, J.M., Adams, T., Pathak, K.R., Edwards, L.E., Hayes, D.D., Cheng, C., Steven, A.C., Weinberg, W.C. and Yusupa, S.H. mtCLIC/CLIC4, an organellular chloride channel protein, is increased by DNA damage and participates in the apoptotic response to p53. Mol. Cell Biol.
22 (2002) 3610–3620.
Article
PubMed
CAS
Google Scholar
Loewen, M.E. and Forsyth, G.W. Structure and function of CLCA proteins. Physiol. Rev.
85 (2005) 1061–1092.
Article
PubMed
CAS
Google Scholar
El-Maghraby, M. and Lever, J.D. Typification and differentiation of medullary cells in the developing rat adrenal. A histochemical and electron microscopic study. J. Anat.
131 (1980) 103–120.
PubMed
CAS
Google Scholar