Skip to main content


You are viewing the new article page. Let us know what you think. Return to old version

Studies on genetic changes in rye samples (Secale cereale L.) maintained in a seed bank


The aim of this study was to identify genetic changes in rye seeds induced by natural ageing during long-term storage and consecutive regeneration cycles under gene bank conditions. Genomic DNA from four rye samples varying in their initial viability after one and three cycles of reproduction was analyzed by AFLP (amplified fragment length polymorphism) fingerprinting. Seven EcoRI/MseI primer combinations defined 663 fragments, and seven PstI/MseI primer combinations defined 551 fragments. The variation in the frequency of the seventy-four EcoRI/MseI bands was statistically significant between samples. These changes could be attributed to genetic changes occurring during storage and regeneration. However, the PstI/MseI fragments appeared to be uninfluenced by seed ageing, regeneration and propagation. A combined Principle Coordinate Analysis revealed differences between samples with different initial viability. We showed that materials with low initial viability differ in their response from highly viable ones, and that the changes exhibited in the former case are preserved through regeneration cycles.



amplified fragment length polymorphism


Dańkowskie Złote


principal component analysis


random amplified polymorphic DNA


sequence-tagged sites


  1. 1.

    Shoen, D.J., Jacques, L.D. and Bataillon, T.M. Deleterious mutation accumulation and regeneration of genetic resources. Proc. Natl. Acad. Sci. USA 95 (1998) 394–399.

  2. 2.

    Roos, E.E. Genetic shifts in mixed bean populations. I. Storage effects. Crop Sci. 24 (1984a) 240–244.

  3. 3.

    Roos, E.E. Genetic shifts in mixed bean populations. II. Effects of regeneration. Crop Sci. 24 (1984b) 711–715.

  4. 4.

    Roos, E.E. and Rincker, C.M. Genetic stability in ‘Pennlate’ orchardgrass seed following artificial ageing. Crop Sci. 22 (1988) 611–613.

  5. 5.

    Stoyanova, S.D. Genetic shift and variations of gliadins induced by seed ageing. Seed Sci. Technol. 19 (1991) 363–371.

  6. 6.

    Stoyanova, S.D. Effects of seed ageing and regeneration on the genetic composition of wheat. Seed Sci. Technol. 20 (1992) 489–496.

  7. 7.

    Stoyanova, S.D. Variation of gliadins in wheat cultivars associated with seed survival and multiplication. Seed Sci. Technol. 24 (1996) 115–126.

  8. 8.

    Bednarek, P.T., Chwedorzewska, K.J. and Puchalski, J. Preliminary molecular studies on genetic changes in rye seeds due to long-term storage and regeneration. In: Challenges in Rye Germplasm Conservation Ed. by. T. Gass, W. Podyma, J. Puchalski, S.A. Eberhart, International Plant Genetic Resources Institute, Rome: (1998) 54–61.

  9. 9.

    Shatters, R.G. jr., Schweder, M.E., West, S.H., Abdelghany, A. and Smith, R.L. Environmentally induced polymorphisms detected by RAPD analysis of soybean seed DNA. Seed Science Research Seed Sci. Technol. 5 (1995) 106–116.

  10. 10.

    Chwedorzewska, K.J., Bednarek, P.T., Puchalski, J. and Krajewski, P. AFLP profiling of long-term stored and regenerated rye genebank samples. Cell. Mol. Biol. Lett. 7A (2002) 457–463.

  11. 11.

    Chwedorzewska, K.J., Bednarek, P.T. and Puchalski, J. Studies on specific rye genome regions due to seed ageing and regeneration. Cell. Mol. Biol. Lett. 7A (2002) 569–576.

  12. 12.

    Chebotar, S., Röder, M.S., Korzun, V. and Börner, A. Genetic integrity of ex situ genebank collections. Cell. Mol. Biol. Lett. 7A (2002) 437–444.

  13. 13.

    Börner, A., Chebotar, S. and Korzun, V. Molecular characterization of the genetic integrity of wheat (Triticum aestivum L.) germplasm after long-term maintenance. Theor. Appl. Genet. 100 (2000) 494–497.

  14. 14.

    Castiglioni, P., Ajmone-Marsan, P., van Wijk, R. and Motto, M. AFLP markers in a molecular linkage map of maize: codominant scoring and linkage group ditstribution. Theor. Appl. Genet. 99 (1999) 425–431.

  15. 15.

    Young, W.P., Schupp, J.M. and Keim, P. DNA methylation and AFLP marker distribution in the soybean genome. Theor. Appl. Genet. 99 (1999) 785–790.

  16. 16.

    Vos, P., Hogers, R., Bleeker, M., van de Lee, T., Hormes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M. and Zabeau, M. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 21 (1995) 4407–4414.

  17. 17.

    Bednarek, P.T., Kubicka, H. and Zawada, M. Morphological, cytological and BSA-based testing on limited segregation population AFLPs. Cell. Mol. Biol. Lett. 7B (2002) 635–648.

  18. 18.

    Bednarek, P.T., Lewandowska, R., Kubicka, H. and Masojć, P. Linkage groups and the indirect chromosome location of cms-P-linked AFLPs. Cell. Mol. Biol. Lett. 7B (2002) 721–736.

  19. 19.

    Mardia, K.V., Kent, J.T. and Bibby, J.M. Multivariate analysis. Academic Press, London. (1979).

  20. 20.

    Bednarek, P.T., Lewandowska, R., Gołas, T. and Paśnik, M. The chromosomal location of rye AFLP bands. Cell. Mol. Biol. Lett. 8 (2003) 955–962.

  21. 21.

    Vuylsteke, M., Mank, R., Antonise, R., Bastiaans, R., Senior, M.L., Stuber, C.W., Melchinger, A.E., Lubberstedt, T., Xia, X.C., Stam, P., Zabeau, M. and Kuiper, M. Two high-density AFLP linkage maps of Zea mays L.: analysis of distribution of AFLP markers. Theor. Appl. Genet. 99 (1999) 921–935.

  22. 22.

    Li, Y-CH., Korol, A.B., Fahima, T., Beiles, A. and Nevo, E. Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol. Ecol. 11 (2002) 2453–2465.

Download references

Author information

Correspondence to Katarzyna J. Chwedorzewska or Piotr T. Bednarek.

Rights and permissions

Reprints and Permissions

About this article

Key words

  • Rye
  • Secale cereale L
  • Seed storage and propagation
  • AFLP