Skip to main content

The effect of auxins (IAA and 4-Cl-IAA) on the redox activity and medium pH of Zea mays L. root segments


Indole-3-acetic acid (IAA) and 4-chloroindole-3-acetic acid (4-Cl-IAA) were tested at different concentrations and times for their capacity to change the redox activity and medium pH of maize root segments. The dose-response surfaces (dose-response curves as a function of time) plotted for redox activity and changes in medium pH (expressed as ΔpH) had a similar shape for both auxins, but differed significantly at the optimal concentrations. With 4-Cl-IAA, the maximal values of redox activity and medium pH changes were observed at 10−10 M, which was a 100-fold lower concentration than with IAA. Correlations were observed between redox activity and medium pH changes at the optimal concentrations of both IAA and 4-Cl-IAA. The results are discussed herein, taking into account both the concentration of the auxins and the effects produced by them.



hexacyanoferrate III


indole-3-acetic acid


4-chloroindole-3-acetic acid


  1. 1.

    Crane, F.L., Goldenberg, H. and Morré, D.J. Dehydrogenases of the plasma membrane. Subcell. Biochem. 6 (1979) 345–399.

    PubMed  CAS  Google Scholar 

  2. 2.

    Lüthje S., Döring, O., Heuer, S., Lüthen, H. and Böttger, M. Oxidoreductases in plant plasma membranes. Biochim. Biophys. Acta 1331 (1997) 81–102.

    PubMed  Google Scholar 

  3. 3.

    Medina, M.A., Del Castillo-Olivares, A. and NúÑez De Castro, I. Multifunctional plasma membrane redox systems. BioEssays 19 (1997) 977–984.

    PubMed  CAS  Article  Google Scholar 

  4. 4.

    Bérczi, A. and Møller, I.M. Redox enzymes in the plant plasma membrane and their possible roles. Plant Cell Env. 23 (2000) 1287–1302.

    Article  Google Scholar 

  5. 5.

    Craig, T.A. and Crane, F.L. Evidence for transplasma membrane electron transport system in plant cells. Proc. Ind. Acad. Sci. 90 (1981) 150–155.

    Google Scholar 

  6. 6.

    Federico, R. and Giartosio, C.E. A transplasmamembrane electron transport system in maize roots. Plant Physiol. 73 (1983) 182–184.

    PubMed  CAS  Google Scholar 

  7. 7.

    Rubinstein, B., Stern, A.I. and Stout, R.G. Redox activity at the surface of oat root cells. Plant Physiol. 76 (1984) 386–391.

    PubMed  CAS  Google Scholar 

  8. 8.

    Menckhoff, M. and Lüthje, S. Transmembrane electron transport in sealed and NAD(P)H-loaded right-side-out plasma membrane vesicles isolated from maize (Zea mays L.) roots. J. Exp. Bot. 55 (2004) 1343–1349.

    PubMed  CAS  Article  Google Scholar 

  9. 9.

    Rubinstein, B. and Stern, A.I. Relationship of transplasmamembrane redox activity to proton and solute transport by roots of Zea mays. Plant Physiol. 80 (1986) 805–811.

    PubMed  CAS  Google Scholar 

  10. 10.

    Böttger, M. and Lüthen, H. Possible linkage between NADH-oxidation and proton secretion in Zea mays L. roots. J. Exp. Bot. 37 (1986) 666–675.

    Google Scholar 

  11. 11.

    Barr, R. The possible role of redox-associated protons in growth of plant cells. J. Bioenerg. Biomemb. 23 (1991) 443–467.

    CAS  Article  Google Scholar 

  12. 12.

    Döring, O., Lüthje, S., Hilgendorf, F. and Böttger, M. Membrane depolarization by hexacyanoferrate (III), hexabromoiridiate (IV) and hexachloroiridiate (IV). J. Exp. Bot. 41 (1990) 1055–1061.

    Google Scholar 

  13. 13.

    Grabov, A. and Böttger, M. Are redox reactions involved in regulation of K+ channels in the plasma membrane of Limnobium stoloniferum root hairs? Plant Physiol. 105 (1994) 927–935.

    PubMed  CAS  Google Scholar 

  14. 14.

    Barr, R. and Böttger, M. The effect of chloro-derivatives of indoleactic acid on plasma membrane electron transport and proton excretion. Proc. Ind. Acad. Sci. 99 (1991) 129–136.

    CAS  Google Scholar 

  15. 15.

    Carrasco-Luna, J., Calatayud, A., González-Darós, F. and del Valle-Tascón, S. Hexacyanoferrate (III) stimulation of elongation in coleoptile segments from Zea mays L. Protoplasma. 184 (1995) 63–71

    CAS  Article  Google Scholar 

  16. 16.

    Davies, P.J. Plant hormones. Biosynthesis, signal transduction, action. eds. Kluwer Academic Publishers, (2004) 204–220.

  17. 17.

    Taiz, L. and Zeiger, E. Plant Physiology. 3rd edn. Sinauer Associates, Inc., Publishers (2002).

    Google Scholar 

  18. 18.

    Engvild, K.C. Natural chlorinated auxins labelled with radioactive chloride in immature seeds. Physiol. Plant. 34 (1975) 286–287.

    CAS  Article  Google Scholar 

  19. 19.

    Engvild, K.C. Simple identification of natural chlorinated auxin in pea by thin layer chromatography. Physiol. Plant. 48 (1980) 435–437.

    CAS  Article  Google Scholar 

  20. 20.

    Engvild, K.C., Egsgaard, H. and Larsen, E. Gass chromatographic-mass spectrometric identification of 4-chloroindole-3-acetic acid methyl ester in immature green peas. Physiol. Plant. 42 (1978) 365–368.

    CAS  Article  Google Scholar 

  21. 21.

    Engvild, K.C., Egsgaard, H. and Larsen, E. Determination of 4-chloroindole-3-acetic acid methyl ester in Lathyrus, Vicia and Pisum by gas chromatography-mass spectrometry. Physiol. Plant. 48 (1980) 499–503.

    CAS  Article  Google Scholar 

  22. 22.

    Hofinger, M. and Böttger, M. Identification by GC-MS of 4-chloroindolilacetic acid and its methyl ester in immature Vicia faba seeds. Phytochem. 18 (1979) 653–654.

    CAS  Article  Google Scholar 

  23. 23.

    Katayama, M., Thiruvikraman, S.V. and Marumo, S. Identification of 4-chloroindole-3-acetic acid and its methyl ester in immature seeds of Vicia amurensis (the tribe Viciaeae) and their absence from three species of Phaseoleae. Plant Cell Physiol. 28 (1987) 383–386.

    CAS  Google Scholar 

  24. 24.

    Böttger, M., Engvild, K.C. and Soll, H. Growth of Avena coleoptiles and pH drop of protoplast suspensions induced by chlorinated indoleacetic acids. Planta 140 (1978) 89–92.

    Article  Google Scholar 

  25. 25.

    Pless, T., Böttger, M., Hedden, P. and Grabe, J. Occurrence of 4-Cl-indoleacetic acid in broad beans and correlation of its levels with seeds development. Plant Physiol. 74 (1984) 320–323.

    PubMed  CAS  Google Scholar 

  26. 26.

    Ahmad, A., Anderson, A.S. and Engvild, K.C. Rooting, growth and ethylene evolution of pea cuttings in response to chloroindole auxins. Physiol. Plant. 69 (1987) 137–140.

    CAS  Article  Google Scholar 

  27. 27.

    Hatano, T., Katayama, M. and Marumo, S. 5,6-dichloroindole-3-acetic acid as a potent auxin: its synthesis and biological activity. Experientia 43 (1987) 1237–1239.

    CAS  Article  Google Scholar 

  28. 28.

    Fischer, C., Lüthen, H., Böttger, M. and Hertel, R. Initial transient growth inhibition in maize coleoptiles following auxin application. J. Plant Physiol. 141 (1992) 88–92.

    Google Scholar 

  29. 29.

    Rescher, U., Walther, A., Schiebl, C. and Klämbt, D. In vitro binding affinities of 4-chloro-, 2-methyl-, 4-methyl-, and 4-ethyl-indoleacetic acid to auxin-binding protein 1 (ABP1) correlate with their growth-stimulating activities. J. Plant Growth Reg. 15 (1996) 1–3.

    CAS  Article  Google Scholar 

  30. 30.

    Karcz, W., Lüthen, H. and Böttger, M. Comparative investigation of IAA and 4-Cl-IAA-induced growth and proton secretion in maize coleoptile segments. Plant Physiol. and Biochem. Spec. Iss. Abstract S01-14, (1996) 7

  31. 31.

    Karcz, W., Lüthen, H. and Böttger, M. Effect of IAA and 4-Cl-IAA on growth rate in maize coleoptile segments. Acta Physiol. Plant. 21 (1999) 133–139.

    CAS  Google Scholar 

  32. 32.

    Karcz, W. and Burdach, Z. A comparision of the effects of IAA and 4-Cl-IAA on growth, proton secretion and membrane potential in maize coleoptile segments. J. Exp. Bot. 53 (2002) 1089–1098.

    PubMed  CAS  Article  Google Scholar 

  33. 33.

    Böttger, M. and Hilgendorf, F. Hormone action on transmembrane electron and H+ transport. Plant Physiol. 86 (1988) 1038–1043

    PubMed  Article  Google Scholar 

  34. 34.

    Lüthen, H., Hilgendorf, F. and Böttger, M. Effect of auxin on growth, proton secretion and transmembrane electron transfer in intact maize roots. in: Structural and functional aspects of transport in roots (Loughman B.C. et al., Eds.), Kluwer Academic Publishers, 1989, 63–67.

  35. 35.

    Hilgendorf, F. and Böttger, M. Influence of temperature on proton secrection and hexacyanoferrate (III) reduction of Zea mays L. roots. Plant Physiol. 101 (1993) 1340–1353.

    Google Scholar 

  36. 36.

    Lüthen, H. and Böttger, M. Induction of elongation in maize coleoptiles by hexachloroiridate and its interrelation with auxin and fusicoccin action. Physiol. Plant. 89 (1993) 77–86.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Halina Lekacz.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lekacz, H., Karcz, W. The effect of auxins (IAA and 4-Cl-IAA) on the redox activity and medium pH of Zea mays L. root segments. Cell Mol Biol Lett 11, 376–383 (2006).

Download citation

Key words

  • Redox activity
  • Medium pH changes
  • Root segments
  • Zea mays L
  • Auxins
  • Dose-response surface