Skip to main content

The atypical pattern of cell death in B16F10 melanoma cells treated with TNP-470

Abstract

TNP-470 is an acknowledged anti-angiogenic factor, and was studied clinically as an anti-cancer drug. We previously reported on an additional property of this molecule: the intracellular generation of reactive oxygen species in B16F10 melanoma cells. We showed that a massive generation of ROS occurred in the first few hours after treatment with TNP-470 and that this event was critical to subsequent cell death. In this study, we analyzed the process of cell death and noticed an atypical pattern of death markers. Some of these, such as DNA fragmentation or condensation of chromatin, were characteristic for programmed cell death, while others (the lack of phosphatidylserine flip-flop but permeability to propidium iodide, the maintenance of adhesion to the substratum, no change in mitochondrial transmembrane potential, no effect of the panspecific caspase inhibitor) rather suggested a necrotic outcome. We concluded that TNP-470 induced at least some pathways of programmed cell death. However, increasing damage to critical cell functions appears to cause a rapid switch into the necrotic mode. Our data is similar to that in other reports describing the action of ROS-generating agents. We hypothesize that this rapid programmed cell death/necrosis switch is a common scenario following free radical stress.

Abbreviations

FITC:

fluorescein isothiocyanate

PCD:

programmed cell death

ROS:

reactive oxygen species

TMRM:

tetramethylrhodamine methyl ester

z-VAD-fmk:

N-benzyloxycabonyl-Val-Ala-Asp-fluoromethylketone

References

  1. 1.

    Ingber, D., Fujita, T., Kishimoto, S. Sudo, K., Kanamaru, T., Brem, H. and Folkman J. Synthetic analogues of fumagillin that inhibit angiogenesis and suppress tumor growth. Nature 348 (1990) 555–557.

    PubMed  CAS  Article  Google Scholar 

  2. 2.

    Zhang, Y., Griffith, E.C., Sage, J., Jacks, T. and Liu, J.O. Cell cycle inhibition by the anti-angiogenic agent TNP-470 is mediated by p53 and p21WAF1/CIP1. Proc. Natl. Acad. Sci. USA 97 (2000) 6427–6432.

    PubMed  CAS  Article  Google Scholar 

  3. 3.

    Mysliwski, A., Koszalka, P., Bigda, J. and Szmit, E. Complete remission of Bomirski Ab amelanotic melanoma in hamsters treated with the angiogenesis inhibitor TNP-470. Neoplasma 49 (2002) 319–322.

    PubMed  CAS  Google Scholar 

  4. 4.

    Koyama, H., Nishizawa, Y., Hosoi, M., Fukumoto, S., Kogawa, K., Shioi, A. and Morii H. The fumagillin analogue TNP-470 inhibits DNA synthesis of vascular smooth muscle cells stimulated by platelet-derived growth factor and insulin-like growth factor-I. Possible involvement of cyclin-dependent kinase 2. Circ. Res. 79 (1996) 757–764.

    PubMed  CAS  Google Scholar 

  5. 5.

    Fan, Y.F., Huang, Z.H. and Nie, J. Effect of TNP-470 on rat vascular smooth muscle cell growth and cell cycle. Di Yi Jun Yi Da Xue Xue Bao 22 (2002) 325–329.

    PubMed  CAS  Google Scholar 

  6. 6.

    Yanase, T., Tamura, M., Fujita, K., Kodama, S. and Tanaka, K. Inhibitory effect of angiogenesis inhibitor TNP-470 on tumor growth and metastasis of human cell lines in vitro and in vivo. Cancer Res. 53 (1993) 2566–2570.

    PubMed  CAS  Google Scholar 

  7. 7.

    Sedlakova, O., Sedlak, J., Hunakova, L., Jakubikova, J., Duraj, J., Sulikova, M., Chovancova, J. and Chorvath B. Angiogenesis inhibitor TNP-470: cytotoxic effects on human neoplastic cell lines. Neoplasma 46 (1999) 283–289.

    PubMed  CAS  Google Scholar 

  8. 8.

    Okroj, M., Kamysz, W., Slominska, E.M., Mysliwski, A. and Bigda, J. A novel mechanism of action of fumagillin analogue, TNP-470 in B16F10 murine melanoma cell line. Anti-Cancer Drugs 16 (2005) 817–823.

    PubMed  CAS  Article  Google Scholar 

  9. 9.

    Gong, J., Traganos, F. and Darzynkiewicz, Z. A selective procedure for DNA extraction from apoptotic cells applicable for gel electrophoresis and flow cytometry. Anal. Biochem. 218 (1994) 314–319.

    PubMed  CAS  Article  Google Scholar 

  10. 10.

    Vanags, D.M., Porn-Ares, M.I., Coppola, S., Burgess, D.H. and Orrenius, S. Protease involvement in fodrin cleavage and phosphatidylserine exposure in apoptosis. J. Biol. Chem. 271 (1996) 31075–31085.

    PubMed  CAS  Article  Google Scholar 

  11. 11.

    Walker, N.I., Harmon, B.V., Gobe, G.C. and Kerr, J.F. Patterns of cell death. Methods Achiev. Exp. Pathol. 13 (1988) 18–54.

    PubMed  CAS  Google Scholar 

  12. 12.

    Alimenti, E., Tafuri, S., Scibelli, A., D’Angelo, D., Manna, L., Pavone, L.M., Belisario, M.A. and Staiano, N. Pro-apoptotic signaling pathway activated by echistatin in GD25 cells. Biochim. Biophys. Acta 1693 (2004) 73–80.

    PubMed  CAS  Article  Google Scholar 

  13. 13.

    Mayer, B. and Oberbauer, R. Mitochondrial regulation of apoptosis. News Physiol. Sci. 18 (2003) 89–94.

    PubMed  CAS  Google Scholar 

  14. 14.

    Darzynkiewicz, Z., Bruno, S., Del Bino, G., Gorczyca, W., Hotz, M.A., Lassota, P. and Traganos, F. Features of apoptotic cells measured by flow cytometry. Cytometry 13 (1992) 795–808.

    PubMed  CAS  Article  Google Scholar 

  15. 15.

    Cohen, G.M. Caspases: the executioners of apoptosis. Biochem. J. 326 (1997) 1–16.

    PubMed  CAS  Google Scholar 

  16. 16.

    Zhou, H.R., Lau, A.S. and Pestka, J.J. Role of double-stranded RNA-activated protein kinase R (PKR) in deoxynivalenol-induced ribotoxic stress response. Toxicol. Sci. 74 (2003) 335–344.

    PubMed  CAS  Article  Google Scholar 

  17. 17.

    Smolenski, R.T., Lachno, D.R., Ledingham, S.J. and Yacoub, M.H. Determination of sixteen nucleotides, nucleosides and bases using high-performance liquid chromatography and its application to the study of purine metabolism in hearts for transplantation. J. Chromatogr. 527 (1990) 414–420.

    PubMed  CAS  Google Scholar 

  18. 18.

    Bright, J. and Khar, A. Apoptosis: programmed cell death in health and disease. Biosci. Rep. 14 (1994) 67–81.

    PubMed  CAS  Article  Google Scholar 

  19. 19.

    Alison, M.R. and Sarraf, C.E. Apoptosis: a gene-directed programme of cell death. JR. Coll. Physicians Lond. 26 (1992) 25–35.

    CAS  Google Scholar 

  20. 20.

    Rudin, C.M. and Thompson, C.B. Apoptosis and disease: regulation and clinical relevance of programmed cell death. Annu. Rev. Med. 48 (1997) 267–281.

    PubMed  CAS  Article  Google Scholar 

  21. 21.

    Leist, M. and Jaattela, M. Four deaths and a funeral: from caspases to alternative mechanisms. Nat. Rev. Mol. Cell Biol. 2 (2001) 589–598.

    PubMed  CAS  Article  Google Scholar 

  22. 22.

    Mgbonyebi, O.P., Russo, J. and Russo, I.H. Roscovitine induces cell death and morphological changes indicative of apoptosis in MDA-MB-231 breast cancer cells. Cancer Res. 59 (1999) 1903–1910.

    PubMed  CAS  Google Scholar 

  23. 23.

    Wei, S.J. S-and G2-phase cell cycle arrests and apoptosis induced by ganciclovir in murine melanoma cells transduced with herpes simplex virus thymidine kinase. Exp. Cell Res. 241 (1998) 66–75.

    PubMed  CAS  Article  Google Scholar 

  24. 24.

    Widlak, P. and Garrard, W.T. Discovery, regulation, and action of the major apoptotic nucleases DFF40/CAD and endonuclease G. J. Cell. Biochem. 94 (2005) 1078–1087.

    PubMed  CAS  Article  Google Scholar 

  25. 25.

    Leist, M., Single, B., Naumann, H., Fava, E., Simon, B., Kuhnle, S. and Nicotera, P. Inhibition of mitochondrial ATP generation by nitric oxide switches apoptosis to necrosis. Exp. Cell Res. 249 (1999) 396–403.

    PubMed  CAS  Article  Google Scholar 

  26. 26.

    Shvedova, A.A., Tyurina, J.Y., Kawai, K., Tyurin, V.A., Kommineni, C., Castranova, V., Fabisiak, J.P. and Kagan, V.E. Selective peroxidation and externalization of phosphatidylserine in normal human epidermal keratinocytes during oxidative stress induced by cumene hydroperoxide. J. Invest. Dermatol. 118 (2002) 1008–1018.

    PubMed  CAS  Article  Google Scholar 

  27. 27.

    Ritov, V.B., Banni, S., Yalowich, J.C., Day, B.W., Claycamp, H.G., Corongiu, F.P. and Kagan, V.E. Non-random peroxidation of different classes of membrane phospholipids in live cells detected by metabolically integrated cis-parinaric acid. Biochim. Biophys. Acta 1283 (1996) 127–140.

    PubMed  Article  Google Scholar 

  28. 28.

    Ahmed, M.H., Arai, T., Konno, H., Nahar, L., Tanaka, T., Izumiyama, N., Takubo, K., Nakamura, S. and Baba, S. Regression of metastatic liver tumors in rats treated with angiogenesis inhibitor TNP-470: occurrence of apoptosis and necrosis. Jpn. J. Cancer Res. 88 (1997) 977–981.

    PubMed  CAS  Google Scholar 

  29. 29.

    Folkman, J. Tumor angiogenesis. Adv. Cancer Res. 19 (1974) 331–358.

    PubMed  CAS  Article  Google Scholar 

  30. 30.

    Kaminski, M., Masaoka, M., Karbowski, M., Kedzior, J., Nishizawa, Y., Usukura, J. and Wakabayashi, T. Ultrastructural basis for the transition of cell death mode from apoptosis to necrosis in menadione-treated osteosarcoma 143B cells. J. Electron Microsc. (Tokyo) 52 (2003) 313–325.

    CAS  Article  Google Scholar 

  31. 31.

    Kaminski, M., Karbowski, M., Miyazaki, Y., Kedzior, J., Spodnik, J.H., Gil, A., Wozniak, M. and Wakabayashi, T. Co-existence of apoptotic and necrotic features within one single cell as a result of menadione treatment. Folia Morphol. (Warsz) 61 (2002) 217–220.

    Google Scholar 

  32. 32.

    Bonfoco, E., Krainc, D., Ankarcrona, M., Nicotera, P. and Lipton, S.A. Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D aspartate or nitric oxide/superoxide in cortical cell cultures. Proc. Natl. Acad. Sci. USA 92 (1995) 7162–7166.

    PubMed  CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marcin Okrój.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Okrój, M., Stawikowska, D., Słomińska, E.M. et al. The atypical pattern of cell death in B16F10 melanoma cells treated with TNP-470. Cell Mol Biol Lett 11, 384–395 (2006). https://doi.org/10.2478/s11658-006-0032-4

Download citation

Key words

  • Reactive oxygen species
  • Angiogenesis
  • Melanoma
  • Apoptosis