Skip to main content
  • Published:

A comparative gene-expression analysis of CD34+ hematopoietic stem and progenitor cells grown in static and stirred culture systems

An Erratum to this article was published on 19 September 2006

Abstract

Static and stirred culture systems are widely used to expand hematopoietic cells, but differential culture performances are observed between these systems. We hypothesize that these differential culture outcomes are caused by the physiological responses of CD34+ hematopoietic stem and progenitor cells (HSPCs) to the different physical microenvironments created in these culture devices. To understand the genetic changes provoked by culture microenvironments, the gene expression profiling of CD34+ HSPCs grown in static and stirred culture systems was compared using SMART-PCR and cDNA arrays. The results revealed that 103 and 99 genes were significantly expressed in CD34+ cells from static and stirred systems, respectively. Of those, 91 have similar levels of expression, while 12 show differential transcription levels. These differentially expressed genes are mainly involved in anti-oxidation, DNA repair, apoptosis, and chemotactic activity. A quantitative molecular understanding of the influences of growth microenvironments on transcriptional events in CD34+ HSPCs should give new insights into optimizing culture strategies to produce hematopoietic cells.

Abbreviations

CB:

cord blood

CFC:

colony-forming cells

EDTA:

ethylenediaminetetraacetic acid

HSPCs:

hematopoietic stem and progenitor cells

IMDM:

Iscove’s modified Dulbecco’s medium

MNC:

mononuclear cells

PBS:

phosphate buffer solution

ROS:

reactive oxygen species

SDS:

sodium dodecylsulfate

SSC:

sodium chloride/sodium citrate

References

  1. Piacibello, W., Sanavio, F., Garetto, L., Severino, A., Bergandi, D., Ferrario, J., Fagioli, F., Berger, M. and Aglietta, M. Extensive amplification and self-renewal of human primitive hematopoietic stem cells from cord blood. Blood 89 (1997) 2644–2653.

    PubMed  CAS  Google Scholar 

  2. Collins, P.C., Miller, W.M. and Papoutsakis, E.T. Stirred culture of peripheral and cord blood hematopoietic cells offers advantages over traditional static systems for clinically relevant applications. Biotechnol. Bioeng. 59 (1998) 534–543.

    Article  PubMed  CAS  Google Scholar 

  3. Zandstra, P.W., Eaves, C.J. and Piret, J.M. Expansions of hematopoietic progenitor cell populations in stirred suspension bioreactors of normal human bone marrow cells. Biotechnology 12 (1994) 909–914.

    Article  PubMed  CAS  Google Scholar 

  4. Zandstra, P.W. and Nagy, A. Stem cell bioengineering. Annu. Rev. Biomed. Eng. 3 (2001) 275–305.

    Article  PubMed  CAS  Google Scholar 

  5. Carswell, K.S. and Papoutsakis, E.T. Culture of human T cells in stirred bioreactors for cellular immunotherapy applications: shear, proliferation, and the IL-2 receptor. Biotechnol. Bioeng. 68 (2000) 328–338.

    Article  PubMed  CAS  Google Scholar 

  6. McDowell, C.L. and Papoutsakis, E.T. Increased agitation intensity increases CD13 receptor surface content and mRNA levels, and alters the metabolism of HL60 cells cultured in stirred tank bioreactors. Biotechnol. Bioeng. 60 (1998) 239–250.

    Article  PubMed  CAS  Google Scholar 

  7. Li, Q., Cai, H., Liu, Q. and Tan, W.S. Differential gene expression of human CD34+ hematopoietic stem and progenitor cells before and after culture. Biotechnol. Lett. 28 (2006) 389–394.

    Article  PubMed  CAS  Google Scholar 

  8. Martindale, J.L. and Holbrook, N.J. Cellular response to oxidative stress: signaling for suicide and survival. J. Cell Physiol. 192 (2002) 1–15.

    Article  PubMed  CAS  Google Scholar 

  9. Shen, C. and Nathan, C. Nonredundant antioxidant defense by multiple two-cysteine peroxiredoxins in human prostate cancer cells. Mol. Med. 8 (2002) 95–102.

    Article  PubMed  CAS  Google Scholar 

  10. Kokubo, Y., Matson, G.B., Derugin, N., Hill, T., Mancuso, A., Chan, P.H. and Weinstein, P.R. Transgenic mice expressing human copper-zinc superoxide dismutase exhibit attenuated apparent diffusion coefficient reduction during reperfusion following focal cerebral ischemia. Brain Res. 947 (2002) 1–8.

    Article  PubMed  CAS  Google Scholar 

  11. Jemth, P. and Mannervik, B. Kinetic characterization of recombinant human glutathione transferase T1-1, a polymorphic detoxication enzyme. Arch. Biochem. Biophys. 348 (1997) 247–254.

    Article  PubMed  CAS  Google Scholar 

  12. Giglia-Mari, G., Coin, F., Ranish, J.A., Hoogstraten, D., Theil, A., Wijgers, N., Jaspers, N.G., Raams, A., Argentini, M., van der Spek, P.J., Botta, E., Stefanini, M., Egly, J.M. Aebersold, R., Hoeijmakers, J.H. and Vermeulen, W. A new, tenth subunit of TFIIH is responsible for the DNA repair syndrome trichothiodystrophy group A. Nat. Genet. 36 (2004) 714–719.

    Article  PubMed  CAS  Google Scholar 

  13. Warnecke-Eberz, U., Metzger, R., Miyazono, F., Baldus, S.E., Neiss, S., Brabender, J., Schaefer, H., Doerfler, W., Bollschweiler, E., Dienes, H.P., Mueller, R.P., Danenberg, P.V., Hoelscher, A.H. and Schneider, P.M. High specificity of quantitative excision repair cross-complementing 1 messenger RNA expression for prediction of minor histopathological response to neoadjuvant radiochemotherapy in esophageal cancer. Clin. Cancer Res. 10 (2004) 3794–3799.

    Article  PubMed  CAS  Google Scholar 

  14. Bruce, A.J., Boling, W., Kindy, M.S., Peschon, J., Kraemer, P.J., Carpenter, M.K., Holtsberg, F.W., and Mattson, M.P. Altered neuronal and microglial responses to excitotoxic and ischemic brain injury in mice lacking TNF receptors. Nat. Med. 2 (1996) 788–794.

    Article  PubMed  CAS  Google Scholar 

  15. Kothari, S., Cizeau, J., McMillan-Ward, E., Israels, S.J., Bailes, M., Ens, K., Kirshenbaum, L.A. and Gibson, S.B. BNIP3 plays a role in hypoxic cell death in human epithelial cells that is inhibited by growth factors EGF and IGF. Oncogene 22 (2003) 4734–4744.

    Article  PubMed  CAS  Google Scholar 

  16. Yoon, D.Y., Buchler, P., Saarikoski, S.T., Hines, O.J., Reber, H.A. and Hankinson, O. Identification of genes differentially induced by hypoxia in pancreatic cancer cells. Biochem. Biophys. Res. Commun. 288 (2001) 882–886.

    Article  PubMed  CAS  Google Scholar 

  17. Essers, M.A., de Vries-Smits, L.M., Barker, N., Polderman, P.E., Burgering, B.M. and Korswagen, H.C. Functional interaction between beta-catenin and FOXO in oxidative stress signaling. Science 308 (2005) 1181–1184.

    Article  PubMed  CAS  Google Scholar 

  18. Ito, K., Hirao, A., Arai, F., Matsuoka, S., Takubo, K., Hamaguchi, I., Nomiyama, K., Hosokawa, K., Sakurada, K., Nakagata, N., Ikeda, Y., Mak, T.W. and Suda, T. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 431 (2004) 997–1002.

    Article  PubMed  CAS  Google Scholar 

  19. Han, W., Ye, Q. and Moore, M.A.S. A soluble form of human Delta-like-1 inhibits differentiation of hematopoietic progenitor cells. Blood 95 (2000) 1616–1625.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Song Tan.

Additional information

An erratum to this article is available athttp://dx.doi.org/10.2478/s11658-006-0051-1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q., Liu, Q., Cai, H. et al. A comparative gene-expression analysis of CD34+ hematopoietic stem and progenitor cells grown in static and stirred culture systems. Cell Mol Biol Lett 11, 475–487 (2006). https://doi.org/10.2478/s11658-006-0039-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-006-0039-x

Key words