- Published:
A comparative gene-expression analysis of CD34+ hematopoietic stem and progenitor cells grown in static and stirred culture systems
Cellular & Molecular Biology Letters volume 11, pages 475–487 (2006)
Abstract
Static and stirred culture systems are widely used to expand hematopoietic cells, but differential culture performances are observed between these systems. We hypothesize that these differential culture outcomes are caused by the physiological responses of CD34+ hematopoietic stem and progenitor cells (HSPCs) to the different physical microenvironments created in these culture devices. To understand the genetic changes provoked by culture microenvironments, the gene expression profiling of CD34+ HSPCs grown in static and stirred culture systems was compared using SMART-PCR and cDNA arrays. The results revealed that 103 and 99 genes were significantly expressed in CD34+ cells from static and stirred systems, respectively. Of those, 91 have similar levels of expression, while 12 show differential transcription levels. These differentially expressed genes are mainly involved in anti-oxidation, DNA repair, apoptosis, and chemotactic activity. A quantitative molecular understanding of the influences of growth microenvironments on transcriptional events in CD34+ HSPCs should give new insights into optimizing culture strategies to produce hematopoietic cells.
Abbreviations
- CB:
-
cord blood
- CFC:
-
colony-forming cells
- EDTA:
-
ethylenediaminetetraacetic acid
- HSPCs:
-
hematopoietic stem and progenitor cells
- IMDM:
-
Iscove’s modified Dulbecco’s medium
- MNC:
-
mononuclear cells
- PBS:
-
phosphate buffer solution
- ROS:
-
reactive oxygen species
- SDS:
-
sodium dodecylsulfate
- SSC:
-
sodium chloride/sodium citrate
References
Piacibello, W., Sanavio, F., Garetto, L., Severino, A., Bergandi, D., Ferrario, J., Fagioli, F., Berger, M. and Aglietta, M. Extensive amplification and self-renewal of human primitive hematopoietic stem cells from cord blood. Blood 89 (1997) 2644–2653.
Collins, P.C., Miller, W.M. and Papoutsakis, E.T. Stirred culture of peripheral and cord blood hematopoietic cells offers advantages over traditional static systems for clinically relevant applications. Biotechnol. Bioeng. 59 (1998) 534–543.
Zandstra, P.W., Eaves, C.J. and Piret, J.M. Expansions of hematopoietic progenitor cell populations in stirred suspension bioreactors of normal human bone marrow cells. Biotechnology 12 (1994) 909–914.
Zandstra, P.W. and Nagy, A. Stem cell bioengineering. Annu. Rev. Biomed. Eng. 3 (2001) 275–305.
Carswell, K.S. and Papoutsakis, E.T. Culture of human T cells in stirred bioreactors for cellular immunotherapy applications: shear, proliferation, and the IL-2 receptor. Biotechnol. Bioeng. 68 (2000) 328–338.
McDowell, C.L. and Papoutsakis, E.T. Increased agitation intensity increases CD13 receptor surface content and mRNA levels, and alters the metabolism of HL60 cells cultured in stirred tank bioreactors. Biotechnol. Bioeng. 60 (1998) 239–250.
Li, Q., Cai, H., Liu, Q. and Tan, W.S. Differential gene expression of human CD34+ hematopoietic stem and progenitor cells before and after culture. Biotechnol. Lett. 28 (2006) 389–394.
Martindale, J.L. and Holbrook, N.J. Cellular response to oxidative stress: signaling for suicide and survival. J. Cell Physiol. 192 (2002) 1–15.
Shen, C. and Nathan, C. Nonredundant antioxidant defense by multiple two-cysteine peroxiredoxins in human prostate cancer cells. Mol. Med. 8 (2002) 95–102.
Kokubo, Y., Matson, G.B., Derugin, N., Hill, T., Mancuso, A., Chan, P.H. and Weinstein, P.R. Transgenic mice expressing human copper-zinc superoxide dismutase exhibit attenuated apparent diffusion coefficient reduction during reperfusion following focal cerebral ischemia. Brain Res. 947 (2002) 1–8.
Jemth, P. and Mannervik, B. Kinetic characterization of recombinant human glutathione transferase T1-1, a polymorphic detoxication enzyme. Arch. Biochem. Biophys. 348 (1997) 247–254.
Giglia-Mari, G., Coin, F., Ranish, J.A., Hoogstraten, D., Theil, A., Wijgers, N., Jaspers, N.G., Raams, A., Argentini, M., van der Spek, P.J., Botta, E., Stefanini, M., Egly, J.M. Aebersold, R., Hoeijmakers, J.H. and Vermeulen, W. A new, tenth subunit of TFIIH is responsible for the DNA repair syndrome trichothiodystrophy group A. Nat. Genet. 36 (2004) 714–719.
Warnecke-Eberz, U., Metzger, R., Miyazono, F., Baldus, S.E., Neiss, S., Brabender, J., Schaefer, H., Doerfler, W., Bollschweiler, E., Dienes, H.P., Mueller, R.P., Danenberg, P.V., Hoelscher, A.H. and Schneider, P.M. High specificity of quantitative excision repair cross-complementing 1 messenger RNA expression for prediction of minor histopathological response to neoadjuvant radiochemotherapy in esophageal cancer. Clin. Cancer Res. 10 (2004) 3794–3799.
Bruce, A.J., Boling, W., Kindy, M.S., Peschon, J., Kraemer, P.J., Carpenter, M.K., Holtsberg, F.W., and Mattson, M.P. Altered neuronal and microglial responses to excitotoxic and ischemic brain injury in mice lacking TNF receptors. Nat. Med. 2 (1996) 788–794.
Kothari, S., Cizeau, J., McMillan-Ward, E., Israels, S.J., Bailes, M., Ens, K., Kirshenbaum, L.A. and Gibson, S.B. BNIP3 plays a role in hypoxic cell death in human epithelial cells that is inhibited by growth factors EGF and IGF. Oncogene 22 (2003) 4734–4744.
Yoon, D.Y., Buchler, P., Saarikoski, S.T., Hines, O.J., Reber, H.A. and Hankinson, O. Identification of genes differentially induced by hypoxia in pancreatic cancer cells. Biochem. Biophys. Res. Commun. 288 (2001) 882–886.
Essers, M.A., de Vries-Smits, L.M., Barker, N., Polderman, P.E., Burgering, B.M. and Korswagen, H.C. Functional interaction between beta-catenin and FOXO in oxidative stress signaling. Science 308 (2005) 1181–1184.
Ito, K., Hirao, A., Arai, F., Matsuoka, S., Takubo, K., Hamaguchi, I., Nomiyama, K., Hosokawa, K., Sakurada, K., Nakagata, N., Ikeda, Y., Mak, T.W. and Suda, T. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 431 (2004) 997–1002.
Han, W., Ye, Q. and Moore, M.A.S. A soluble form of human Delta-like-1 inhibits differentiation of hematopoietic progenitor cells. Blood 95 (2000) 1616–1625.
Author information
Authors and Affiliations
Corresponding author
Additional information
An erratum to this article is available athttp://dx.doi.org/10.2478/s11658-006-0051-1.
Rights and permissions
About this article
Cite this article
Li, Q., Liu, Q., Cai, H. et al. A comparative gene-expression analysis of CD34+ hematopoietic stem and progenitor cells grown in static and stirred culture systems. Cell Mol Biol Lett 11, 475–487 (2006). https://doi.org/10.2478/s11658-006-0039-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.2478/s11658-006-0039-x