Kaufman, R.J. Stress signalling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev.
13 (1999) 1211–1233.
PubMed
CAS
Google Scholar
Pahl, H.L. Signal transduction from the endoplasmic reticulum to the cell nucleus. Physiol. Rev.
79 (1999) 683–701.
PubMed
CAS
Google Scholar
Ma, Y. and Hendershot, L.M. The role of the unfolded protein response in tumour development: friend or foe? Nat. Rev. Cancer
4 (2004) 966–977.
Article
PubMed
CAS
Google Scholar
Lemasters, J.J. Dying a thousand deaths: redundant pathways from different organelles to apoptosis and necrosis. Gastroenterology
129 (2005) 351–360.
Article
PubMed
Google Scholar
Breckenridge, D.G., Germain, M., Mathai, J.P., Nguyen, M. and Shore, G.C. Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene
22 (2003) 8608–8618.
Article
PubMed
CAS
Google Scholar
Scheuner, D., Song, B., McEwen, E., Liu, C., Laybutt, R., Gillespie, P., Saunders, T., Bonner-Weir, S. and Kaufman, R.J. Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol. Cell.
7 (2001) 1165–1176.
Article
PubMed
CAS
Google Scholar
Iwakoshi, N.N., Lee, A.H., Vallabhajosyula, P., Otipoby, K.L., Rajewsky, K. and Glimcher, L.H. Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1. Nat. Immunol.
4 (2003) 321–329.
Article
PubMed
CAS
Google Scholar
Gass, J.N., Gifford, N.M. and Brewer, J.W. Activation of an unfolded protein response during differentiation of antibody-secreting B cells. J. Biol. Chem.
277 (2002) 49047–49054.
Article
PubMed
CAS
Google Scholar
Reimold, A.M., Etkin, A., Clauss, I., Perkins, A., Friend, D.S., Zhang, J., Horton, H.F., Scott, A., Orkin, S.H., Byrne, M.C., Grusby, M.J. and Glimcher, L.H. An essential role in liver development for transcription factor XBP-1. Genes Dev.
14 (2000) 152–157.
PubMed
CAS
Google Scholar
Freiden, P.J., Gaut, J.R. and Hendershot, L.M. Interconversion of three differentially modified and assembled forms of BiP. EMBO J.
11 (1992) 63–70.
PubMed
CAS
Google Scholar
Blond-Elguindi, S., Fourie, A.M., Sambrook, J.F. and Gething, M.J. Peptide-dependent stimulation of the ATPase activity of the molecular chaperone BiP is the result of conversion of oligomers to active monomers. J. Biol. Chem.
268 (1993) 12730–12735.
PubMed
CAS
Google Scholar
Tirasophon, W., Welihinda, A.A. and Kaufman, R.J. A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease (Ire1p) in mammalian cells. Genes Dev.
12 (1998) 1812–1824.
PubMed
CAS
Google Scholar
Wang, X.Z., Harding, H.P., Zhang, Y., Jolicoeur, E.M., Kuroda, M. and Ron, D. Cloning of mammalian Ire1 reveals diversity in the ER stress responses. EMBO J.
17 (1998a) 5708–5717.
Article
PubMed
CAS
Google Scholar
Ma, Y. and Hendershot, L.M. The unfolding tale of the unfolded protein response. Cell
107 (2001) 827–830
Shen, X., Ellis, R.E., Lee, K., Liu, C.Y., Yang, K., Solomon, A., Yoshida, H., Morimoto, R., Kurnit, D.M., Mori, K. and Kaufman, R.J. Complementary signaling pathways regulate the unfolded protein response and are required for C. elegans development. Cell
107 (2001) 893–903.
Article
PubMed
CAS
Google Scholar
Lee, K., Tirasophon, W., Shen, X., Michalak, M., Prywes, R., Okada, T., Yoshida, H., Mori, K. and Kaufman, R.J. IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev.
16 (2002) 452–466.
Article
PubMed
CAS
Google Scholar
Harding, H.P., Zhang, Y. and Ron, D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature
397 (1999) 271–274.
Article
PubMed
CAS
Google Scholar
Shi, Y., Vattem, K.M., Sood, R., An, J., Liang, J., Stramm, L. and Wek, R.C. Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase, PEK, involved in translational control. Mol. Cell. Biol.
18 (1998) 7499–74509.
PubMed
CAS
Google Scholar
Jiang, H.Y. and Wek, R.C. Phosphorylation of the alpha-subunit of the eukaryotic initiation factor-2 (eIF2alpha) reduces protein synthesis and enhances apoptosis in response to proteasome inhibition. J. Biol. Chem.
280 (2005) 14189–14202.
Article
PubMed
CAS
Google Scholar
Ye, J., Rawson, R.B., Komuro, R., Chen, X., Dave, U.P., Prywes, R., Brown, M.S. and Goldstein, J.L. ER stress induces cleavage of membranebound ATF6 by the same proteases that process SREBPs. Mol. Cell.
6 (2000) 1355–1364.
Article
PubMed
CAS
Google Scholar
Yoshida, H., Matsui, T., Yamamoto, A., Okada, T. and Mori, K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell
107 (2001) 881–891.
Article
PubMed
CAS
Google Scholar
Calfon, M., Zeng, H., Urano, F., Till, J.H., Hubbard, S.R., Harding, H.P., Clark, S.G. and Ron, D. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature
415 (2002) 92–96.
Article
PubMed
CAS
Google Scholar
Fornace, A.J. Jr., Alamo, I. Jr. and Hollander, M.C. DNA damage-inducible transcripts in mammalian cells. Proc. Natl. Acad. Sci. USA
85 (1988) 8800–8804.
Article
PubMed
CAS
Google Scholar
Ron, D. and Habener, J.F. CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription. Genes Dev.
6 (1992) 439–453.
PubMed
CAS
Google Scholar
Barone, M.V., Crozat, A., Tabaee, A., Philipson, L. and Ron, D. CHOP (GADD153) and its oncogenic variant, TLS-CHOP, have opposing effects on the induction of G1/S arrest. Genes Dev.
8 (1994) 453–464.
PubMed
CAS
Google Scholar
Zhan, Q., Lord, K.A., Alamo, I. Jr., Hollander, M.C., Carrier, F., Ron, D., Kohn, K.W., Hoffman, B., Liebermann, D.A. and Fornace, A.J. Jr. The gadd and MyD genes define a novel set of mammalian genes encoding acidic proteins that synergistically suppress cell growth. Mol. Cell. Biol.
14 (1994) 2361–2371.
PubMed
CAS
Google Scholar
Harding, H.P., Novoa, I., Zhang, Y., Zeng, H., Wek, R., Schapira, M. and Ron, D. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol. Cell.
6 (2000) 1099–108.
Article
PubMed
CAS
Google Scholar
Okada, T., Yoshida, H., Akazawa, R., Negishi, M. and Mori, K. Distinct roles of activating transcription factor 6 (ATF6) and double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK) in transcription during the mammalian unfolded protein response. Biochem. J.
366 (2002) 585–594.
Article
PubMed
CAS
Google Scholar
Wang, X.Z. and Ron, D. Stress-induced phosphorylation and activation of the transcription factor CHOP (GADD153) by p38 MAP Kinase. Science
272 (1996) 1347–1349.
Article
PubMed
CAS
Google Scholar
Oyadomari, S. and Mori, M. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ.
11 (2004) 381–389.
Article
PubMed
CAS
Google Scholar
Wang, X.Z., Lawson, B., Brewer, J.W., Zinszner, H., Sanjay, A., Mi, L.J., Boorstein, R., Kreibich, G., Hendershot, L.M. and Ron, D. Signals from the stressed endoplasmic reticulum induce C/EBP-homologous protein (CHOP/GADD153). Mol. Cell. Biol.
16 (1996) 4273–4280.
PubMed
CAS
Google Scholar
Prostko, C.R., Brostrom, M.A., Malara, E.M. and Brostrom, C.O. Phosphorylation of eukaryotic initiation factor (eIF) 2 alpha and inhibition of eIF-2B in GH3 pituitary cells by perturbants of early protein processing that induce GRP78. J. Biol. Chem.
267 (1992) 16751–16754.
PubMed
CAS
Google Scholar
Samuel, C.E., Kuhen, K.L., George, C.X., Ortega, L.G., Rende-Fournier, R. and Tanaka, H. The PKR protein kinase—an interferon-inducible regulator of cell growth and differentiation. Int. J. Hematol.
65 (1997) 227–237.
Article
PubMed
CAS
Google Scholar
St Johnston, D., Brown, N.H., Gall, J.G. and Jantsch, M. A conserved double-stranded RNA-binding domain. Proc. Natl. Acad. Sci. USA
89 (1992) 10979–10983.
Article
PubMed
CAS
Google Scholar
Zinn, K., Keller, A., Whittemore, L.A. and Maniatis, T. 2-Aminopurine selectively inhibits the induction of beta-interferon, c-fos, and c-myc gene expression. Science
240 (1988) 210–213.
Article
PubMed
CAS
Google Scholar
Kumar, A., Haque, J., Lacoste, J., Hiscott, J. and Williams, B.R. Doublestranded RNA-dependent protein kinase activates transcription factor NFkappa B by phosphorylating I kappa B. Proc. Natl. Acad. Sci. USA
91 (1994) 6288–6292.
Article
PubMed
CAS
Google Scholar
Jimenez-Garcia, L.F., Green, S.R., Mathews, M.B. and Spector, D.L. Organization of the double-stranded RNA-activated protein kinase DAI and virus-associated VA RNAI in adenovirus-2-infected HeLa cells. J. Cell Sci.
106 (1993) 11–22.
PubMed
CAS
Google Scholar
Jeffrey, I.W., Kadereit, S., Meurs, E.F., Metzger, T., Bachmann, M., Schwemmle, M., Hovanessian, A.G. and Clemens, M.J. Nuclear localization of the interferon-inducible protein kinase PKR in human cells and transfected mouse cells. Exp. Cell Res.
218 (1995) 17–27.
Article
PubMed
CAS
Google Scholar
Wu, S., Kumar, K.U. and Kaufman, R.J. Identification and requirement of three ribosome binding domains in dsRNA-dependent protein kinase (PKR). Biochemistry
37 (1998) 13816–13826.
Article
PubMed
CAS
Google Scholar
Nakagawa, T., Zhu, H., Morishima, N., Li, E., Xu, J., Yankner, B.A. and Yuan, J. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403 (2000) 98–103.
Article
PubMed
CAS
Google Scholar
Fischer, H., Koenig, U., Eckhart, L. and Tschachler, E. Human caspase 12 has acquired deleterious mutations. Biochem. Biophys. Res. Commun.
293 (2002) 722–726.
Article
PubMed
CAS
Google Scholar
Hitomi, J., Katayama, T., Eguchi, Y., Kudo, T., Taniguchi, M., Koyama, Y., Manabe, T., Yamagishi, S., Bando, Y., Imaizumi, K., Tsujimoto, Y. and Tohyama, M. Involvement of caspase-4 in endoplasmic reticulum stressinduced apoptosis and Abeta-induced cell death. J. Cell Biol.
165 (2004) 347–356.
Article
PubMed
CAS
Google Scholar
Urano, F., Wang, X., Bertolotti, A., Zhang, Y., Chung, P., Harding, H.P. and Ron, D. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science
287 (2000) 664–666.
Article
PubMed
CAS
Google Scholar
Yoneda, T., Imaizumi, K., Oono, K., Yui, D., Gomi, F., Katayama, T. and Tohyama, M. Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J. Biol. Chem.
276 (2001) 3935–3940.
Google Scholar
Rao, R.V., Castro-Obregon, S., Frankowski, H., Schuler, M., Stoka, V., del Rio, G., Bredesen, D.E. and Ellerby, H.M. Coupling endoplasmic reticulum stress to the cell death program. An Apaf-1-independent intrinsic pathway. J. Biol. Chem.
277 (2002) 21836–21842.
Article
PubMed
CAS
Google Scholar
Morishima, N., Nakanishi, K., Takenouchi, H., Shibata, T. and Yasuhiko, Y. An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12. J. Biol. Chem.
277 (2002) 34287–34294.
Article
PubMed
CAS
Google Scholar
Nakagawa, T., Zhu, H., Morishima, N., Li, E., Xu, J., Yankner, B.A. and Yuan J. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature
403 (2000) 98–103.
Article
PubMed
CAS
Google Scholar
Di Sano, F., Ferraro, E., Tufi, R., Achsel, T., Piacentini, M. and Cecconi, F. Endoplasmic reticulum stress induces apoptosis by an apoptosomedependent but caspase 12-independent mechanism. J. Biol. Chem.
281 (2006) 2693–2700.
Article
PubMed
Google Scholar
Saleh, M., Mathison, J.C., Wolinski, M.K., Bensinger, S.J., Fitzgerald, P., Droin, N., Ulevitch, R.J., Green, D.R. and Nicholson, D.W. Enhanced bacterial clearance and sepsis resistance in caspase-12-deficient mice. Nature
440 (2006) 1064–1068.
Article
PubMed
CAS
Google Scholar
Saleh, M., Vaillancourt, J.P., Graham, R.K., Huyck, M., Srinivasula, S.M., Alnemri, E.S., Steinberg, M.H., Nolan, V., Baldwin, C.T., Hotchkiss, R.S., Buchman, T.G., Zehnbauer, B.A., Hayden, M.R., Farrer, L.A., Roy, S. and Nicholson, D.W. Differential modulation of endotoxin responsiveness by human caspase-12 polymorphisms. Nature
6 (2004) 75–79.
Article
Google Scholar
Pahl, H.L. and Baeuerle, P.A. A novel signal transduction pathway from the endoplasmic reticulum to the nucleus is mediated by transcription factor NFkappa B. EMBO J.
14 (1995) 2580–2588.
PubMed
CAS
Google Scholar
Pahl, H.L., Sester, M., Burgert, H.G. and Baeuerle, P.A. Activation of transcription factor NF-kappaB by the adenovirus E3/19K protein requires its ER retention. J. Cell Biol.
132 (1996) 511–522.
Article
PubMed
CAS
Google Scholar
Hacki, J., Egger, L., Monney, L., Conus, S., Rosse, T., Fellay, I. and Borner, C. Apoptotic crosstalk between the endoplasmic reticulum and mitochondria controlled by Bcl-2. Oncogene
19 (2000) 2286–2295.
Article
PubMed
CAS
Google Scholar
Boya, P., Cohen, I., Zamzami, N., Vieira, H.L. and Kroemer, G. Endoplasmic reticulum stress-induced cell death requires mitochondrial membrane permeabilization. Cell Death Differ.
9 (2002) 465–467.
Article
PubMed
CAS
Google Scholar
McCormick, T.S., McColl, K.S. and Distelhorst, C.W. Mouse lymphoma cells destined to undergo apoptosis in response to thapsigargin treatment fail to generate a calcium-mediated grp78/grp94 stress response. J. Biol. Chem.
272 (1997) 6087–6092.
Article
PubMed
CAS
Google Scholar
McCullough, K.D., Martindale, J.L., Klotz, L.O., Aw, T.Y. and Holbrook, N.J. Gadd153 sensitizes cells to endoplasmic reticulum stress by downregulating Bcl2 and perturbing the cellular redox state. Mol. Cell. Biol.
21 (2001) 1249–1259.
Article
PubMed
CAS
Google Scholar
Wei, M.C., Zong, W.X., Cheng, E.H., Lindsten, T., Panoutsakopoulou, V., Ross, A.J., Roth, K.A., MacGregor, G.R., Thompson, C.B. and Korsmeyer, S.J. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science
292 (2001) 727–730.
Article
PubMed
CAS
Google Scholar
Rizzuto, R., Pinton, P., Carrington, W., Fay, F.S., Fogarty, K.E., Lifshitz, L.M., Tuft, R.A. and Pozzan, T. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science
280 (1998) 1763–1766.
Article
PubMed
CAS
Google Scholar
Hsu, Y.T., Wolter, K.G. and Youle, R.J. Cytosol-to-membrane redistribution of Bax and Bcl-X(L) during apoptosis. Proc. Natl. Acad. Sci. USA
94 (1997) 3668–3672.
Article
PubMed
CAS
Google Scholar
Lindsten, T., Ross A.J., King, A., Zong, W.X., Rathmell, J.C., Shiels, H.A., Ulrich, E., Waymire, K.G., Mahar, P., Frauwirth, K., Chen, Y., Wei, M., Eng, V.M., Adelman, D.M., Simon, M.C., Ma, A., Golden, J.A., Evan, G., Korsmeyer, S.J., MacGregor, G.R. and Thompson, C.B. The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol. Cell.
6 (2000) 1389–1399.
Article
PubMed
CAS
Google Scholar
Zong, W.X., Lindsten, T., Ross, A.J., MacGregor, G.R. and Thompson, C.B. BH3-only proteins that bind pro-survival Bcl-2 family members fail to induce apoptosis in the absence of Bax and Bak. Genes Dev.
15 (2001) 1481–1486.
Article
PubMed
CAS
Google Scholar
Pinton, P., Ferrari, D., Magalhaes, P., Schulze-Osthoff, K., Di Virgilio, F., Pozzan, T. and Rizzuto, R. Reduced loading of intracellular Ca2+ stores and downregulation of capacitative Ca2+ influx in Bcl-2-overexpressing cells. J. Cell Biol.
148 (2000) 857–862.
Article
PubMed
CAS
Google Scholar
Foyouzi-Youssefi, R., Arnaudeau, S., Borner, C., Kelley, W.L., Tschopp, J., Lew, D.P., Demaurex, N. and Krause, K.H. Bcl-2 decreases the free Ca2+ concentration within the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA
97 (2000) 5723–5728.
Article
PubMed
CAS
Google Scholar
Chami, M., Prandini, A., Campanella, M., Pinton, P., Szabadkai, G., Reed, J.C. and Rizzuto, R. Bcl-2 and Bax exert opposing effects on Ca2+ signaling, which do not depend on their putative pore-forming region. J. Biol. Chem.
279 (2004) 54581–54589.
Article
PubMed
CAS
Google Scholar
Li, H., Zhu, H., Xu, C.J. and Yuan, J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell
94 (1998) 491–501.
Article
PubMed
CAS
Google Scholar
Luo, X., Budihardjo, I., Zou, H., Slaughter, C. and Wang, X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell
94 (1998) 481–490.
Article
PubMed
CAS
Google Scholar
Puthalakath, H. and Strasser, A. Keeping killers on a tight leash: transcriptional and post-translational control of the pro-apoptotic activity of BH3-only proteins. Cell Death Differ.
9 (2002) 505–512.
Article
PubMed
CAS
Google Scholar
Letai, A., Bassik, M.C., Walensky, L.D., Sorcinelli, M.D., Weiler, S. and Korsmeyer, S.J. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell.
2 (2002) 183–192.
Article
PubMed
CAS
Google Scholar
Germain, M., Mathai, J.P. and Shore, G.C. BH-3-only BIK functions at the endoplasmic reticulum to stimulate cytochrome c release from mitochondria. J. Biol. Chem. 277 (2002) 18053–18060.
Article
PubMed
CAS
Google Scholar
Ito, Y., Pandey, P., Mishra, N., Kumar, S., Narula, N., Kharbanda, S., Saxena, S. and Kufe, D. Targeting of the c-Abl tyrosine kinase to mitochondria in endoplasmic reticulum stress-induced apoptosis. Mol. Cell. Biol.
21 (2001) 6233–6242.
Article
PubMed
CAS
Google Scholar
Ng, F.W., Nguyen, M., Kwan, T., Branton, P.E., Nicholson, D.W., Cromlish, J.A. and Shore, G.C. p28 Bap31, a Bcl-2/Bcl-XL-and procaspase-8-associated protein in the endoplasmic reticulum. J. Cell. Biol.
139 (1997) 327–338.
Article
PubMed
CAS
Google Scholar
Breckenridge, D.G., Nguyen, M., Kuppig, S., Reth, M. and Shore, G.C. The procaspase-8 isoform, procaspase-8L, recruited to the BAP31 complex at the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA
99 (2002) 4331–4336.
Article
PubMed
CAS
Google Scholar
Nguyen, M., Breckenridge, D.G., Ducret, A. and Shore, G.C. Caspaseresistant BAP31 inhibits fas-mediated apoptotic membrane fragmentation and release of cytochrome c from mitochondria. Mol. Cell. Biol.
20 (2000) 6731–6740.
Article
PubMed
CAS
Google Scholar
Wang, X., Zelenski, N.G., Yang, J., Sakai, J., Brown, M.S. and Goldstein J.L. Cleavage of sterol regulatory element binding proteins (SREBPs) by CPP32 during apoptosis. EMBO J.
15 (1996) 1012–1020.
PubMed
CAS
Google Scholar
Keenan, R.J., Freymann, D.M., Stroud, R.M. and Walter, P. The signal recognition particle. Annu. Rev. Biochem.
70 (2001) 755–775.
Article
PubMed
CAS
Google Scholar
Utz, P.J., Hottelet, M., Le, T.M., Kim, S.J., Geiger, M.E., van Venrooij, W.J. and Anderson P. The 72-kDa component of signal recognition particle is cleaved during apoptosis. J. Biol. Chem. 273 (1998) 35362–35370.
Article
PubMed
CAS
Google Scholar
Hirota, J., Furuichi, T. and Mikoshiba, K. Inositol 1,4,5-trisphosphate receptor type 1 is a substrate for caspase-3 and is cleaved during apoptosis in a caspase-3-dependent manner. J. Biol. Chem.
274 (1999) 34433–34437.
Article
PubMed
CAS
Google Scholar
Reddy, R.K., Lu, J. and Lee, A.S. The endoplasmic reticulum chaperone glycoprotein GRP94 with Ca (2+)-binding and antiapoptotic properties is a novel proteolytic target of calpain during etoposide-induced apoptosis. J. Biol. Chem. 274 (1999) 28476–28483.
Article
PubMed
CAS
Google Scholar
Wellington, C.L. and Hayden, M.R. Caspases and neurodegeneration: on the cutting edge of new therapeutic approaches. Clin. Genet.
57 (2000) 1–10.
Article
PubMed
CAS
Google Scholar
Qu, L., Huang, S., Baltzis, D., Rivas-Estilla, A.M., Pluquet, O., Hatzoglou, M., Koumenis, C., Taya, Y., Yoshimura, A. and Koromilas, A.E. Endoplasmic reticulum stress induces p53 cytoplasmic localization and prevents p53-dependent apoptosis by a pathway involving glycogen synthase kinase-3 beta. Genes Dev.
18 (2004) 261–277.
Article
PubMed
CAS
Google Scholar
Waterman, M.J., Stavridi, E.S., Waterman, J.L. and Halazonetis, T.D. ATMdependent activation of p53 involves dephosphorylation and association with 14-3-3 proteins. Nat Genet.
19 (1998) 175–178.
Article
PubMed
CAS
Google Scholar
Stavridi, E.S., Chehab, N.H., Malikzay, A. and Halazonetis, T.D. Substitutions that compromise the ionizing radiation-induced association of p53 with 14-3-3 proteins also compromise the ability of p53 to induce cell cycle arrest. Cancer Res.
61 (2001) 7030–7033.
PubMed
CAS
Google Scholar
Bourdon, J.C., Deguin-Chambon, V., Lelong, J.C., Dessen, P., May, P., Debuire, B. and May, E. Further characterisation of the p53 responsive element identification of new candidate genes for trans-activation by p53. Oncogene
14 (1997) 85–94.
Article
PubMed
CAS
Google Scholar