Skip to main content
  • Short Communication
  • Published:

AtGRP7 is involved in the regulation of abscisic acid and stress responses in arabidopsis

Abstract

The Arabidopsis AtGRP7 gene, encoding a glycine-rich RNA-binding protein, has been shown to be involved in the regulation of a circadian-regulated negative feedback loop. However, little is known about the role of AtGRP7 in mediating abscisic acid (ABA) and stress responses. Here, we show that AtGRP7 plays a role in both. AtGRP7 was repressed by ABA, high salt and mannitol. Disruption of AtGRP7 by T-DNA insertion led to hypersensitive responses to ABA in both seed germination and root growth assays. The atgrp7-1 mutant was also hypersensitive to osmotic stress conditions, such as high salt and high concentrations of mannitol. In addition, the atgrp7-1 mutant plants accumulated significantly higher transcript levels of two ABA-and stress-inducible genes, RD29A and RAB18, compared with the wild-type plants. Taken together, these results suggest that AtGRP7 is involved in the regulation of ABA and stress responses.

Abbreviations

ABA:

abscisic acid

GR-RBP:

glycine-rich RNA-binding protein

MS:

Murashige and Skoog

TFs:

transcription factors

References

  1. Fedoroff, N.V. Cross-talk in abscisic acid signaling. Sci. STKE RE10 (2002) 1–12.

    Google Scholar 

  2. Finkelstein, R.R., Gampala, S.S.L. and Rock, C.D. Abscisic acid signaling in seeds and seedlings. Plant Cell (Suppl). 14 (2002) S15–S45.

    CAS  Google Scholar 

  3. Himmelbach, A., Yang, Y. and Grill, E. Relay and control of abscisic acid signaling. Curr. Opin. Plant Biol. 6 (2003) 470–479.

    Article  PubMed  CAS  Google Scholar 

  4. Giraudat, J. Abscisic acid signaling. Curr. Opin. Cell Biol. 7 (1995) 232–238.

    Article  PubMed  CAS  Google Scholar 

  5. Pandey, G.K., Cheong, Y.H., Kim, K.N., Grant, J.J., Li, L., Hung, W., D’Angelo, C., Weinl, S., Kudla, J. and Luan, S. The calcium sensor calcineurin B-like 9 modulates abscisic acid sensitivity and biosynthesis in Arabidopsis. Plant Cell. 16 (2004) 1912–1924.

    Article  PubMed  CAS  Google Scholar 

  6. Kim, K.N., Cheong, Y.H., Grant, J.J., Pandey, G.K. and Luan, S. CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis. Plant Cell. 15 (2003) 411–423.

    Article  PubMed  CAS  Google Scholar 

  7. Sridha, S. and Wu, K. Identification of AtHD2C as a novel regulator of abscisic acid responses in Arabidopsis. Plant J. 46 (2006) 124–133.

    Article  PubMed  CAS  Google Scholar 

  8. Pandey, G.K., Grant, J.J., Cheong, Y.H., Kim, B.G., Li, L. and Luan, S. ABR1, an APETALA2-domain transcription factor that functions as a repressor of ABA response in Arabidopsis. Plant Physiol. 139 (2005) 1185–1193.

    Article  PubMed  CAS  Google Scholar 

  9. Razem, F.A., El-Kereamy, A., Abrams S.R. and Hill R.D. The RNA-binding protein FCA is an abscisic acid receptor. Nature 439 (2006) 290–294.

    Article  PubMed  CAS  Google Scholar 

  10. Sato, N. A cold-regulated cyanobacterial gene cluster encodes RNAbinding protein and ribosomal protein S21. Plant Mol. Biol. 24 (1994) 819–823.

    Article  PubMed  CAS  Google Scholar 

  11. Sato, N. A family of cold-regulated RNA-binding protein genes in the cyanobacterium Anabaena variabilis M3. Nucleic. Acids Res. 23 (1995) 2161–2167.

    PubMed  CAS  Google Scholar 

  12. Gómez, J., Sánchez, M.D., Stiefel, V., Rigau, J., Puigdomènech, P. and Pagès, M. A gene induced by the plant hormone abscisic acid in response to water stress encodes a glycine-rich protein. Nature 334 (1988) 262–264.

    Article  PubMed  Google Scholar 

  13. Bergeron, D., Beauseigle, D. and Bellemare, G. Sequence and expression of a gene encoding a protein with RNA-binding and glycine-rich domains in Brassica napus. Biochim. Biophys. Acta. 1216 (1993) 123–125.

    PubMed  CAS  Google Scholar 

  14. Hirose, T., Sugita, M. and Sugiura, M. cDNA structure, expression and nucleic acid-binding properties of three RNA-binding proteins in tobacco: occurrence of tissue-specific alternative splicing. Nucleic. Acids Res. 21 (1993) 3981–3987.

    PubMed  CAS  Google Scholar 

  15. Carpenter, C.D., Kreps, J.A. and Simon, A.E. Genes encoding glycinerich Arabidopsis thaliana proteins with RNA-binding motifs are influenced by cold treatment and an endogenous circadian rhythm. Plant Physiol. 104 (1994) 1015–1025.

    Article  PubMed  CAS  Google Scholar 

  16. Derry, J.M., Kerns, J.A. and Francke, U. RBM3, a novel human gene Xp11.23 with putative RNA-binding domain. Hum. Mol. Genet. 4 (1995) 2307–2311.

    PubMed  CAS  Google Scholar 

  17. Kwak, K.J., Kim, Y.O. and Kang, H. Characterization of transgenic Arabidopsis plants overexpressing GR-RBP4 under high salinity, dehydration, or cold stress. J. Exp. Bot. 56 (2005) 3007–3016.

    Article  PubMed  CAS  Google Scholar 

  18. Heintzen, C., Nater, M., Apel, K. and Staiger, D. AtGRP7, a nuclear RNA-binding protein as a component of a circadian-regulated negative feedback loop in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 94 (1997) 8515–8520.

    Article  PubMed  CAS  Google Scholar 

  19. Murashige, T. and Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant 15 (1962) 473–497.

    Article  CAS  Google Scholar 

  20. Alonso, J.M., Stepanova, A.N., Leisse, T.J., Kim, C.J., Chen, H., Shinn, P., Stevenson, D.K., Zimmerman, J., Barajas, P., Cheuk, R. Gadrinab, C., Heller, C., Jeske, A., Koesema, E., Meyers, C.C., Parker, H., Prednis, L., Ansari, Y., Choy, N., Deen, H., Geralt, M., Hazari, N., Hom, E., Karnes, M., Mulholland, C., Ndubaku R., Schmidt, I., Guzman, P., Aguilar-Henonin, L., Schmid, M., Weigel, D., Carter, D.E., Marchand, T., Risseeuw, E., Brogden, D., Zeko, A., Crosby, W.L., Berry, C.C. and Ecker J.R. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301 (2003) 653–657.

    Article  PubMed  Google Scholar 

  21. Staiger, D. and Apel, K. Circadian clock-regulated expression of an RNA-binding protein in Arabidopsis: characterisation of a minimal promoter element. Mol. Gen. Genet. 261 (1999) 811–819.

    Article  PubMed  CAS  Google Scholar 

  22. Zimmermann, P., Hirsch-Hoffmann, M., Hennig, L. and Gruissem, W. GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol. 136 (2004) 2621–2632.

    Article  PubMed  CAS  Google Scholar 

  23. Rock, C.D. Pathways to abscisic acid-regulated gene expression. New Phytol. 148 (2000) 357–396.

    Article  CAS  Google Scholar 

  24. Leung, J. and Giraudat, J. Abscisic acid signal transduction. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49 (1998) 199–222.

    Article  PubMed  CAS  Google Scholar 

  25. Nishiyama, H., Itoh, K., Kaneko, Y., Kishishita, M., Yoshida, O. and Fujita, J. A glycine-rich RNA-binding protein mediating cold-inducible suppression of mammalian cell growth. J. Cell Biol. 137 (1997) 899–908.

    Article  PubMed  CAS  Google Scholar 

  26. Seo, M. and Koshiba, T. Complex regulation of ABA biosynthesis in plants. Trends Plant Sci. 7 (2002) 41–48.

    Article  PubMed  CAS  Google Scholar 

  27. Zeevaart, J.A.D. and Creelman, R.A. Metabolism and physiology of abscisic acid. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39 (1988) 439–473.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuqing Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, S., Jiang, L., Song, S. et al. AtGRP7 is involved in the regulation of abscisic acid and stress responses in arabidopsis. Cell Mol Biol Lett 11, 526–535 (2006). https://doi.org/10.2478/s11658-006-0042-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-006-0042-2

Key words