Skip to main content
  • Published:

Plant dehydrins — Tissue location, structure and function

An Erratum to this article was published on 01 March 2007

Abstract

Dehydrins (DHNs) are part of a large group of highly hydrophilic proteins known as LEA (Late Embryogenesis Abundant). They were originally identified as group II of the LEA proteins. The distinctive feature of all DHNs is a conserved, lysine-rich 15-amino acid domain, EKKGIMDKIKEKLPG, named the K-segment. It is usually present near the C-terminus. Other typical dehydrin features are: a track of Ser residues (the S-segment); a consensus motif, T/VDEYGNP (the Y-segment), located near the N-terminus; and less conserved regions, usually rich in polar amino acids (the Φ-segments). They do not display a well-defined secondary structure. The number and order of the Y-, S-and K-segments define different DHN sub-classes: YnSKn, YnKn, SKn, Kn and KnS. Dehydrins are distributed in a wide range of organisms including the higher plants, algae, yeast and cyanobacteria. They accumulate late in embryogenesis, and in nearly all the vegetative tissues during normal growth conditions and in response to stress leading to cellular dehydration (e.g. drought, low temperature and salinity). DHNs are localized in different cell compartments, such as the cytosol, nucleus, mitochondria, vacuole, and the vicinity of the plasma membrane; however, they are primarily localized to the cytoplasm and nucleus. The precise function of dehydrins has not been established yet, but in vitro experiments revealed that some DHNs (YSKn-type) bind to lipid vesicles that contain acidic phospholipids, and others (KnS) were shown to bind metals and have the ability to scavenge hydroxyl radicals [Asghar, R. et al. Protoplasma 177 (1994) 87–94], protect lipid membranes against peroxidation or display cryoprotective activity towards freezing-sensitive enzymes. The SKn-and K-type seem to be directly involved in cold acclimation processes. The main question arising from the in vitro findings is whether each DHN structural type could possess a specific function and tissue distribution. Much recent in vitro data clearly indicates that dehydrins belonging to different subclasses exhibit distinct functions.

Abbreviations

DHNs:

dehydrins

Kn-type:

dehydrins containing n-copies of K-segments

KnS-type:

dehydrins containing n-copies of K-segments followed a single copy of S-segment

LEA:

late embryogenesis abundant

SKn-type:

dehydrins containing a single copy of S-segment followed by n-copies of K-segments

YnKn-type:

dehydrins containing n-copies of Y-segments followed by n-copies of K-segments

YnSKn-type:

dehydrins containing n-copies of Y-segments followed a single copy of S-segment and n-copies of K-segments

References

  1. Ingram, J. and Bartels, D. The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47 (1996) 377–403.

    Article  PubMed  CAS  Google Scholar 

  2. Allagulova, Ch.R., Gilamov, F.R., Shakirova, F.M. and Vakhitov, V.A. The plant dehydrins: structure and functions. Biochemistry (Moscow) 68 (2003) 945–951.

    Article  CAS  Google Scholar 

  3. Garay-Arroyo A., Colmenoro-Florest J.M., Garciarrubio A. and Covarrubias A.A. Highly hydrophilic proteins in prokaryotes and eucaryotes are common during conditions of water deficit. J. Biol. Chem. 275 (2000) 5668–5674.

    Article  PubMed  CAS  Google Scholar 

  4. Dure, L., Crouch, M., Harada, J., Ho, T.-H.D., Mundy, J., Quatrano, R., Thomas, T. and Sung, Z.R. Common amino acid sequence domains among the LEA proteins of higher plants. Plant Mol. Biol. 12 (1989) 475–486.

    Article  CAS  Google Scholar 

  5. Cuming, A. C. LEA proteins. In Seed Proteins (Shewry, P. R. and Casey, R., Eds.), (1999) pp. 753–780, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  6. Bray, E. A. Molecular responses to water deficit. Plant Physiol. 103 (1993) 1035–1040

    PubMed  CAS  Google Scholar 

  7. Wise, M.J. LEAping to conclusions: a computational reanalysis of late embryogenesis abundant proteins and their possible roles. BMC Bioinform. 4 (2003) 52.

    Article  Google Scholar 

  8. McCubbin, W.D., Kay, C.M. and Lane, B.G. Hydrodynamic and optical properties of the wheat germ Em protein. Can. J. Biochem. Cell Biol. 63 (1985) 803–811.

    Article  CAS  Google Scholar 

  9. DureIII, L. Occurrence of a repeating 11-mer amino acid sequence motif in diverse organisms. Protein Pept. Lett. 8 (2001) 115–122.

    Article  CAS  Google Scholar 

  10. Solomon, A., Salomon, R., Paperna, I. and Glazer, I. Desiccation stress of entomopathogenic nematodes induces the accumulation of a novel heat stable product. Parasitology 121 (2000) 409–416.

    Article  PubMed  CAS  Google Scholar 

  11. Browne, J., Tunnacliffe, A. and Burnell, A. Plant desiccation gene found in a nematode. Nature (London) 416 (2002) 38.

    Article  CAS  Google Scholar 

  12. Goyal, K., Tisi, L., Basran, A., Browne, J., Burnell, A., Zurdo, J. and Tunnacliffe, A. Transition from natively unfolded to folded state induced by desiccation in an anhydrobiotic nematode protein. J. Biol. Chem. 278 (2003) 12977–12984.

    Article  PubMed  CAS  Google Scholar 

  13. Wolkers, W.F., McCready, S., Brandt, W.F., Lindsey, G.G. and Hoekstra, F.A. Isolation and characterization of a D-7 LEA protein that stabilizes glasses in vitro. Biochim. Biophys. Acta 1544 (2001) 196–206.

    PubMed  CAS  Google Scholar 

  14. Close, T.J. Dehydrins: A commonality in the response of plants to dehydration and low temperature. Physiol. Plant 100 (1997) 291–296.

    Article  CAS  Google Scholar 

  15. Campbell, S.A. and Close, T.J. Dehydrins: genes, proteins, and association with phenotypic traits. New Phytol. 137 (1997) 61–74.

    Article  CAS  Google Scholar 

  16. Li, R., Brawley, S.H. and Close, T.J. Dehydrin-like proteins in fucoid algae. Plant Physiol. 114 (1997) 479–479.

    Google Scholar 

  17. Mitwisha, L., Brandt, W., McCread, L. and Lindsey, G.G. HSP12 is a LEA-like protein in Saccharomyces cerevisiae. Plant Mol. Biol. 37 (1998) 513–521.

    Article  Google Scholar 

  18. Davidson, W.S., Jonas, A., Clayton, D.F. and George, J.M. “Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes.” J. Biol. Chem. 273 (1998) 9443–9449.

    Article  PubMed  CAS  Google Scholar 

  19. Segrest, J.P., Deloof, H., Dohlman, J.G., Brouilette C.G. and Anantharamaiah, G.M. Amphipathic helix motif: classes and properties. Proteins Struct. Funct. Genet. 8 (1990) 103–117.

    Article  PubMed  CAS  Google Scholar 

  20. Close, T.J., Kortt, A.A. and Chandler, P.M. A cDNA-Based Comparison of Dehydration-Induced Proteins (Dehydrins) in Barley and Corn. Plant Mol. Biol. 13 (1989) 95–108.

    Article  PubMed  CAS  Google Scholar 

  21. Lisse, T., Bartels, D., Kalbitzer, H.R. and Jaenicke, R. The recombinant dehydrinlike desiccation stress protein from the resurrection plant Craterostigma plantagineum displays no defined three-dimensional structure in its native state. Biol. Chem. 377 (1996) 555–561.

    PubMed  CAS  Google Scholar 

  22. Ismail, A.M., Hall, A.E. and Close, T.J. Purification and partial characterization of a dehydrin involved in chilling tolerance during seedling emergence of cowpea. Plant Physiol. 120 (1999a) 237–244.

    Article  PubMed  CAS  Google Scholar 

  23. Puhakainen, T., Hess, M.V., Mäkela, P., Svenson, J., Heino, P. and Palva, E.T. Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Mol. Biol. 54 (2004) 743–753.

    Article  PubMed  CAS  Google Scholar 

  24. Choi, D.W., Zhu, B. and Close, T.J. The barley (Hordeum vulgare L.) dehydrin multigene family: sequences, allele types, chromosome assignments, and expression characteristics of 11 Dhn genes of cv Dicktoo. Theor. Appl. Genet. 98 (1999) 1234–1247.

    Article  CAS  Google Scholar 

  25. Rodriguez, E.M., Svenson, J.T., Malatrasi, M., Choi, D.-W and Close, T.J. Barley Dhn13 encodes a KS-type dehydrin with constitutive and stress responsive expression. Theor. Appl. Genet. 110 (2005) 852–858.

    Article  PubMed  CAS  Google Scholar 

  26. Svenson, J., Ismail, A.M., Palva, E.T and Close, T.J. Dehydrins. In: Sensing, Signalling and Cell Adaptation (Storey, K.B. and Storey, J.M. Eds.), Elsevier Science B.V. (2002) 155–171.

  27. Goday, A., Jensen, A.B., Culianezmacia, F.A., Alba, M.M., Figueras, M., Serratosa, J., Torrent, M. and Pages, M. The maize abscisic acid-responsive protein RAB17 is located in the nucleus and interacts with nuclear-localization signals. Plant Cell 6 (1994) 351–360.

    Article  PubMed  CAS  Google Scholar 

  28. Robertson, M. and Chandler, P.M. A dehydrin cognate protein from pea (Pisum sativum L.) with an atypical pattern of expression. Plant Mol. Biol. 26 (1994) 805–816.

    Article  PubMed  CAS  Google Scholar 

  29. Kiyosue, T., Yamaguchi-Shinozaki, K., Shinozaki, K., Kamada, H. and Harada, H. cDNA cloning of Ecp40, an embryogenic-cell protein in carrot, and its expression during somatic and zygotic embryogenesis. Plant Mol. Biol. 21 (1993) 1053–1068.

    Article  PubMed  CAS  Google Scholar 

  30. Momma, M., Haraguchi, K., Saito, M., Chikuni, K. and Harada, K. Purification and characterization of the acid soluble 26-kDa polypeptide from soybean seeds. Biosci. Biotechnol. Biochem. 61 (1997) 1286–1291.

    Article  PubMed  CAS  Google Scholar 

  31. Momma, M., Kaneko, S., Haraguchi, K. and Matsukura, U. Peptide mapping and assessment of cryoprotective activity of 26/27-kDa dehydrin from soybean seeds. Biosci. Biotechnol. Biochem. 67 (2003) 1832–1835.

    Article  PubMed  CAS  Google Scholar 

  32. Nylander, M., Svensson, J., Palva, E.T. and Welin, B.V. Stress-induced accumulation and tissue-specific localisation of dehydrins in Arabidopsis thaliana. Plant Mol. Biol. 45 (2001) 263–279.

    Article  PubMed  CAS  Google Scholar 

  33. Bravo, L.A., Close, T.J., Corcuera, L.J. and Guy, C.L. Characterization of an 80-kDa dehydrin-like protein in barley responsive to cold acclimation. Physiol. Plant. 106 (1999) 177–183.

    Article  CAS  Google Scholar 

  34. Houde, M., Daniel, C., Lachapelle, M., Allard, F., Laliberte, S. and Sarhan, F. Immunolocalization of freezing-tolerance-associated proteins in the cytoplasm and nucleoplasm of wheat crown tissues. Plant J. 8 (1995) 583–593.

    Article  PubMed  CAS  Google Scholar 

  35. Danyluk, J., Perron, A., Houde, M., Limin, A., Fowler, B., Benhamou, N. and Sarhan, F. Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. Plant Cell 10 (1998) 623–638.

    Article  PubMed  CAS  Google Scholar 

  36. Godoy, J.A., Lunar, R., Torresschumann, S., Moreno, J., Rodrigo, R.M. and Pintortoro, J.A. Expression, tissue distribution and subcellular-localization of dehydrin Tas14 in salt-stressed tomato plants. Plant Mol. Biol. 26 (1994) 1921–1934.

    Article  PubMed  CAS  Google Scholar 

  37. Rorat, T., Grygorowicz, W.J., Irzykowski, W. and Rey, P. Expression of KS-type dehydrins is primarily regulated by factors related to organ type and leaf developmental stage under vegetative growth. Planta 218 (2004) 878–885.

    Article  PubMed  CAS  Google Scholar 

  38. Rorat, T., Szabala, B.M., Grygorowicz, W.J., Wojtowicz, B., Yin, Z. and Rey, P. Expression of SK3-type dehydrin in transporting organs is associated with cold acclimation in Solanum species. Planta 224 (2006) 205–221.

    Article  PubMed  CAS  Google Scholar 

  39. Koag, M-C., Fenton, R.D., Wilken, S. and Close, T.J. The binding of maize DHN1 to lipid vesicles. Gain of structure and lipid specificity. Plant. Physiol. 131 (2003) 309–316.

    Article  PubMed  CAS  Google Scholar 

  40. Krüger, C., Berkowith, O., Stephan, U.W. and Hell, R. A metal-binding member of the late embryogenesis abundant protein family transports iron in the phloem of Ricuinus communis L. J. Biol. Chem. 277 (2002) 25062–25062.

    Article  PubMed  CAS  Google Scholar 

  41. Hara, M., Fujinaga, M. and Kuboi, T. Metal binding by citrus dehydrin with histidine-rich domains. J. Exp. Bot. 56 (2005) 2695–2703.

    Article  PubMed  CAS  Google Scholar 

  42. Hara, M., Fujinaga, M. and Kuboi, T. Radical scavenging activity and oxidative modification of citrus dehydrin. Plant. Physiol. Biol. 42 (2004) 657–662.

    Article  CAS  Google Scholar 

  43. Hara, M., Terashima, S, Fukaya, T. and Kuboi, T. Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta 217 (2003) 290–298.

    PubMed  CAS  Google Scholar 

  44. Wisniewski, M., Webb, R., Balsamo, R., Close, T.J., Yu, X.M. and Griffith, M. Purification, immunolocalization, cryoprotective, and antifreeze activity of PCA60: A dehydrin from peach (Prunus persica). Physiol. Plant. 105 (1999) 600–608.

    Article  CAS  Google Scholar 

  45. Rinne, P.L.H., Kaikuranta, P.L.M., van der Plas, L.H.W. and van der Schoot, C. Dehydrins in cold-acclimated apices of birch (Betula pubescens Ehrh.): production, localization and potential role in rescuing enzyme function during dehydration. Planta 209 (1999) 377–388.

    Article  PubMed  CAS  Google Scholar 

  46. Hara, M., Terashima, S. and Kuboi, T. Characterization and cryoprotective activity of cold-responsive dehydrin from Citrus unshiu. J. Plant. Physiol. 158 (2001) 1333–1339.

    Article  CAS  Google Scholar 

  47. Lang, V. and Palva, E.T. The expression of a RAB-related gene, RAB18, is induced by abscisic-acid during the cold-acclimation process of Arabidopsis thaliana (L) Heynh. Plant Mol. Biol. 20 (1992) 951–962.

    Article  PubMed  CAS  Google Scholar 

  48. Karlson, D.T., Fujino, T., Kimura, S., Baba, K., Itoh, T. and Ashworth, E.N. Novel plasmodesmata association of dehydrin-like proteins in cold acclimation red-osier dogwood (Cornus sericea). Tree Physiol. 23 (2003) 759–767.

    PubMed  CAS  Google Scholar 

  49. Schneider, K., Wells, B., Schmelzer, E., Salamini, F. and Bartels, D. Desiccation leads to the rapid accumulation of both cytosolic and chloroplastic proteins in the resurrection plant Craterostigma plantagineum Hochst. Planta 189 (1993) 120–131.

    Article  CAS  Google Scholar 

  50. Egerton-Warburton, L.M., Balsamo, R.A. and Close, T.J. Temporal accumulation and ultrastructural localization of dehydrins in Zea mays. Physiol. Plant. 101 (1997) 545–555.

    Article  CAS  Google Scholar 

  51. Borovskii, G.B., Stupnikova, I.V., Antipina, A.I. and Voinikov, V.K. Accumulation of protein, immunochemically related to dehydrins in the mitochondria of cold treated plants. Dokl. Akad. Nauk 371 (2000) 251–254.

    CAS  Google Scholar 

  52. Heyen, B.J., Alsheikh, M.K., Smith, E.A., Torvik, C.F., Seals, D.F. and Randall, S.K. The calcium-binding activity of a vacuole-associated, dehydrin-like protein is regulated by phosphorylation. Plant Physiol. 130 (2002) 675–687.

    Article  PubMed  CAS  Google Scholar 

  53. Asghar, R., Fenton, R.D., Demason, D.A. and Close, T.J. Nuclear and cytoplasmic localization of maize embryo and aleurone dehydrin. Protoplasma 177 (1994) 87–94.

    Article  CAS  Google Scholar 

  54. Bracale, M., Levi, M., Savini, C., Dicorato, W. and Galli, M.G. Water deficit in pea root tips: Effects on the cell cycle and on the production of dehydrin-like proteins. Ann. Bot. 79 (1997) 593–600.

    Article  CAS  Google Scholar 

  55. Jensen, A.B., Goday, A., Figueras, M., Jessop, A.C. and Pages, M. Phosphorylation mediates the nuclear targeting of the maize RAB17 protein. Plant J. 13 (1998) 691–697.

    Article  PubMed  CAS  Google Scholar 

  56. Mundy, J. and Chua, N.H. Abscisic acid and water-stress induce the expression of a novel rice gene. Embo J. 7 (1988) 2279–2286.

    PubMed  CAS  Google Scholar 

  57. Neven, L., Haskell, G.D.W., Hofig, A., Li, Q.B. and Guy, C.L. Characterization of a spinach gene responsive to low-temperature and water-stress. Plant Mol. Biol. 21 (1993) 291–305.

    Article  PubMed  CAS  Google Scholar 

  58. Vilardell, J., Goday, A., Freire, M.A., Torrent, M., Martinez, M.C., Torne, J. M. and Pages, M. Gene, sequence, developmental regulation and protein phosphorylation of RAB17 in maize. Plant Mol. Biol. 14 (1990) 423–432.

    Article  PubMed  CAS  Google Scholar 

  59. Plana, M., Itarte, E., Eritja, R., Goday, A., Pages, M. and Martinez, M.C. Phosphorylation of maize RAB-17 protein by casein kinase-2. J. Biol. Chem. 266 (1991) 22510–22514.

    PubMed  CAS  Google Scholar 

  60. Alsheikh, M.K., Heyen, B.J., Randall, S.K. Ion binding properties of the dehydrin ERD14 are dependent upon phosphorylation. J. Biol. Chem. 278 (2003) 40882–40889.

    Article  PubMed  CAS  Google Scholar 

  61. Golan-Goldhirsh, A., Peri, I., Birk, Y. and Smirnoff, P. Inflorescence bud proteins of Pistacia vera. Trees-Struct. Funct. 12 (1998) 415–419.

    Google Scholar 

  62. Levi, A., Panta, G.R., Parmentier, C.M., Muthalif, M.M. Arora, R., Shanker, S. and Rowland, L.J. Complementary DNA cloning, sequencing and expression of an unusual dehydrin from blueberry floral buds. Physiol. Plant. 107 (1999) 98–109.

    Article  CAS  Google Scholar 

  63. Sarhan, F., Oullet, F. and Vazquez-Tello, A. The wheat wcs120 gene family: a useful model to understand the molecular genetics of freezing tolerance in cereals. Physiol. Plant. 101 (1997) 439–445.

    Article  CAS  Google Scholar 

  64. Ismail, A.M., Hall, A.E. and Close, T.J. Allelic variation of a dehydrin gene cosegregates with chilling tolerance during seedling emergence. Proc. Natl. Acad. Sci. U. S. A. 96 (1999b) 13566–13570.

    Article  PubMed  CAS  Google Scholar 

  65. Whitsitt, M.S., Collins, R.G. and Mullet, J.E. Modulation of dehydration tolerance in soybean seedlings. Plant Physiol. 114 (1997) 917–925.

    PubMed  CAS  Google Scholar 

  66. Cellier, F., Conéjéro, G., Breitler, J-C. and Casse, F. Molecular and physiological responses to water deficit in drought-tolerant and drought-sensitive lines of sunflower. Plant Physiol. 116 (1998) 319–328.

    Article  PubMed  CAS  Google Scholar 

  67. Ismail, A.M., Hall, A.E. and Close, T.J. Chilling tolerance during emergence of cowpea associate with a dehydrin and slow electrolyte leakage. Crop Sci. 37 (1997) 1270–1277.

    Article  Google Scholar 

  68. Tabaei-Aghdaei, S.R., Harrison, P. and Pearce, R.S. Expression of dehydratio-stress-related genes in the crowns of wheatgresses species [Lophopyrum elongatum (Host) A. Love and Agropyron desertorum (Fisch. Ex Link.) Schult. having contrasting acclimation to salt, cold and drought. Plant Cell Environ. 23 (2000) 561–571.

    Article  CAS  Google Scholar 

  69. Zhu, B., Choi, D.W., Fenton, R. and Close, T.J. Expression of the barley dehydrin multigene family and the development of freezing tolerance. Mol. Gen. Genet. 264 (2000) 145–153.

    Article  PubMed  CAS  Google Scholar 

  70. Kaye, C., Neven, L., Hofig, A., Li, Q.B., Haskell, D. and Guy, C. Characterization of a gene for spinach CAP160 and expression of two spinach cold-acclimation proteins in tobacco. Plant Physiol. 116 (1998) 1367–1377.

    Article  PubMed  CAS  Google Scholar 

  71. Frank, W., Munnik, T., Kerkmann K., Salamini F. and Bartels D. Water deficit triggers phospholipase D activity in the resurrection plant Craterostigma plantagineum. Plant Cell 12 (2000) 111–123.

    Article  PubMed  CAS  Google Scholar 

  72. Munnik, T. Phosphatidic acid: an emerging plant lipid second messenger. Trends Plant Sci. 6 (2001) 227–233.

    Article  PubMed  CAS  Google Scholar 

  73. Cullis, P.R., Hope, M.J. and Tilcock C.P.S. Lipid polymorphism and the roles of lipids in membranes. Chem. Phys. Lipids 40 (1986) 127–144

    Article  PubMed  CAS  Google Scholar 

  74. Pearce, R.S. Extracellular ice and cell shape in frost-stressed cereals leaves: a low temperature scanning-electron microscopy study. Planta 175 (1988) 313–324.

    Article  Google Scholar 

  75. Pearce, R.S. and Ashworth E.N. Cell shape and localization of ice in leaves of overwintering wheat during frost stress in the field. Planta 188 (1992) 324–331.

    Article  Google Scholar 

  76. Welin, B.V., Olson, A., Nylander, M. and Palva, E.T. characterization and differential expression of DHN/LEA/RAB-like genes during cold-acclimation and drought stress in Arabidopsis thaliana. Plant Mol. Biol. 26 (1994) 131–144.

    Article  PubMed  CAS  Google Scholar 

  77. Houde, M., Danyluk, J., Laliberte, J.F., Rassart, E., Dhindsa, R.S. and Sarhan, F. Cloning, characterization, and expression of a cDNA encoding a 50-kilodalton protein specifically induced by cold-acclimation in wheat. Plant Physiol. 99 (1992) 1381–1387.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

An erratum to this article is available at http://dx.doi.org/10.2478/s11658-006-0071-x.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rorat, T. Plant dehydrins — Tissue location, structure and function. Cell Mol Biol Lett 11, 536–556 (2006). https://doi.org/10.2478/s11658-006-0044-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-006-0044-0

Key words