Skip to main content

How influenza’s neuraminidase promotes virulence and creates localized lung mucosa immunodeficiency


Neuraminidase (NA) is an enzyme coded for by the genome of influenza critical for its pathogenicity and survival. Three currently accepted roles for this NA in promoting influenza virulence are: 1. NA cleaves newly formed virus particles from the host cell membrane. Without NA, newly formed virus would remain attached to the cell within which it was produced. 2. NA prevents newly released virus particles from aggregating to each other, preventing clumping that would reduce dissemination. 3. NA promotes viral penetration of sialic acid-rich mucin that bathes and protects respiratory epithelium through which the virus must spread and replicate. We outline here previous research evidence of two further, albeit hypothetical, functions of NA that together could cause disruption the mucosa-IgA axis, creating localized partial immunosuppressed state, enhancing both influenza infection itself and secondary bacterial pneumonia: 4. IgA provides primary immunoglobulin defense of mucosal surfaces. The hinge region of IgA is normally sialylated. IgA denuded of sialic acid is recognized, bound, and cleared by hepatic asialoglycoprotein receptor (ASGPR). Thus, IgA exposed to free NA would be so denuded and have increased hepatic clearance. 5. NA removes sialic acid moieties from mucosa-residing gamma/delta T cells or IgA producing B cells. Previous work indicates desialylation of these lymphocytes' outer cell membrane results in altered homing, to bone marrow, away from mucosa. Currently marketed NA inhibitors oseltamivir (Tamiflu) and zanamivir (Relenza) are FDA approved in USA for influenza prophylaxis and treatment. These NA inhibitors lower incidence of secondary bacterial infection in cases where an influenza infection occurs despite their use. Moreover, they are ameliorative in patients with secondary bacterial infections treated with antibiotics, a benefit that surpasses the treatment of antibiotics alone. We interpret these last two points as indicating our ascription of localized immunosuppression to influenza's NA could be correct and lead to new treatments of infections generally.



asialoglycoprotein receptor




IgA nephropathy




N-acetyl-neuraminic acid


  1. Moscona, A. Neuraminidase inhibitors for influenza. N. Engl. J. Med. 353 (2005) 1363–1367.

    PubMed  Article  CAS  Google Scholar 

  2. Matrosovich, M.N., Matrosovitch, T.Y., Gray, T, Roberts, N.A. and Klenk, H.D. Neuraminidase is important for the initiation of influenza virus infection in human airway epithelium. J. Virol. 78 (2004) 12665–12667.

    PubMed  Article  CAS  Google Scholar 

  3. Gubareva, L.V., Kaiser, L. and Hayden, F.G. Influenza virus neuraminidase inhibitors. Lancet 355 (2000) 827–835.

    PubMed  Article  CAS  Google Scholar 

  4. Englund, J.A. Antiviral therapy of influenza. Sem. in Ped. Infect. Dis. 13 (2002) 120–128.

    Article  Google Scholar 

  5. Stiver, G. The treatment of influenza with antiviral drugs. CMAJ 168 (2003) 49–57.

    PubMed  Google Scholar 

  6. Colman, P.M. A novel approach to antiviral therapy for influenza. J. Antimicrob. Chemother. 44 (1999) 17–22.

    PubMed  Article  CAS  Google Scholar 

  7. Brandtzaeg, P., Farstad, I.N., Johansen, F.E., Morton, H.C., Norderhaug, I.N. and Yamanaka, T. The B-cell system of human mucosae and exocrine glands. Immunol. Rev. 171 (1999) 45–87.

    PubMed  Article  CAS  Google Scholar 

  8. Tomana, M., Kulhavy, R. and Mestecky, J. Receptor-mediated binding and uptake of IgA by human liver. Gastroenterology 94 (1988) 762–770.

    PubMed  CAS  Google Scholar 

  9. Groh, V., Porcelli, S., Fabbi, M., Lanier, L.L., Picker, L.J., Anderson, T., Warnke, R.A., Bhan, A.K., Strominger, J.L. and Brenner, M.B. Human lymphocyes bearing T cell receptor gamma/delta are phenotypically diverse and evenly distributed throughout the lymphoid system. J. Exp. Med. 169 (1989) 1277–1294.

    PubMed  Article  CAS  Google Scholar 

  10. Spencer, J., Isaacson, P.G., Diss, T.C. and MacDonald, T.T. Expression of disulfide-linked and non-disulfide-linked forms of the T cell receptor gamma/delta heterodimer in human intestinal intraepithelial lymphocytes. Eur. J. Immunol. 19 (1989) 1335–1338.

    PubMed  CAS  Google Scholar 

  11. Deusch, K., Luling, F., Reich, K., Classen, M., Wagner, H. and Pfeffer, K.A major fraction of human intraepithelial lymphocytes simultaneously expresses the gamma/delta T cell receptor, the CD8 accessory molecule and preferentially uses the V delta1 gene segment. Eur. J. Immunol. 21 (1991) 1053–1059.

    PubMed  CAS  Google Scholar 

  12. Jones, W.M., Walcheck, B. and Jutila, M.A. Generation of a new gamma/delta T cell-specific monoclonal antibody (GD3.5). J. Immunol. 156 (1996) 3772–3779.

    PubMed  CAS  Google Scholar 

  13. Floyd, H., Nitschke, L. and Crocker, P.R. A novel subset of murine B cells that expresses unmasked forms of CD22 is enriched in the bone marrow: Implications for B-cell homing to the bone marrow. Immunology 101 (2000) 342–347.

    PubMed  Article  CAS  Google Scholar 

  14. Nitschke, L., Floyd, H. and Ferguson, D.J., Identification of CD22 ligands on CD22 bone marrow sinusoidal endothelium implicated in CD22-dependent homing of recirculating B-cells. J. Exp. Med. 189 (1999) 1513–1518.

    PubMed  Article  CAS  Google Scholar 

  15. Reinholdt, J., Tomana, M. and Mortensen, S.B. Molecular aspects of IgA degredation by oral streptococci. Infect. Immunol. 58 (1990) 1186–1194.

    CAS  Google Scholar 

  16. Kast R.E. A theory of lymphocyte blast transformation and malignant change based on proteolytic cleavage of the trigger peptide: The detendomer. Oncology 29 (1974) 249–264.

    PubMed  CAS  Article  Google Scholar 

  17. Kast, R.E. Lymphocytes and cells in malignant transformation. Oncology 32 (1975) 175–189.

    PubMed  CAS  Google Scholar 

  18. Gronbaek Frandsen, E.V. Bacterial degradation of IgA1 in relation to periodontal disease. APMIS (Suppl) 87 (1999) 1–54.

    CAS  Google Scholar 

  19. King, S.J., Hippe, K.R., Gould, J.M., Bae, D., Peterson, S., Cline, R.T., Fasching, C., Janoff, E.N. and Weiser, J.N. Phase variable desialylation of host proteins that bind to Streptococcus pneumoniae in vivo and protect the airway. Mol. Microbiol. 54 (2004) 159–171.

    PubMed  Article  CAS  Google Scholar 

  20. Kannagi, R. Regulatory roles of carbohydrate ligands for selectins in the homing of lymphocytes. Curr. Opin. Struct. Biol. 12 (2002) 599–608.

    PubMed  Article  CAS  Google Scholar 

  21. Glezen, W.P., Payne, A.A. and Snyder, D.N. Mortality and influenza. J. Infect. Dis. 146 (1982) 313–321.

    PubMed  CAS  Google Scholar 

  22. Simonsen, L, Fukada, K. and Schonberger, L.B. The impact of influenza epidemics on hospitalizations. J. Infect. Dis. 181 (2000) 831–837.

    PubMed  Article  CAS  Google Scholar 

  23. Simonsen, L. The global impact of influenza on morbidity and mortality. Vaccine 17 (Suppl 1) (1999) S3–10.

    PubMed  Article  Google Scholar 

  24. McCullers, J.A. and Bartmess, K.C. Role of neauraminidase in lethal synergism between influenza virus and streptococcus pneumoniae. J. Infect. Dis. 187 (2003) 1000–1009.

    PubMed  Article  CAS  Google Scholar 

  25. McCullers, J.A. Effect of antiviral treatment on the outcome of secondary bacterial pneumonia after influenza. J. Infect. Dis. 190 (2004) 519–526.

    PubMed  Article  CAS  Google Scholar 

  26. Kaiser, L., Wat, C., Mills, T., Mahoney, P., Ward, P. and Hayden, F. Impact of oseltamivir treatment on influenza-related lower respiratory tract complications and hospitalizations. Arch. Intern. Med. 163 (2003) 1667–1672.

    PubMed  Article  CAS  Google Scholar 

  27. Kaiser, L., Keene, O.N. and Hammond, J.M. Impact of zanamivir on antibiotic use for respiratory events following acute influenza in adolescents and adults. Arch Intern Med 160 (2000) 3234–3240.

    PubMed  Article  CAS  Google Scholar 

  28. Treanor, J.J., Hayden, F.G., Vrooman, P.S., Barbarash, R., Bettis, R., Riff, D., Singh, S., Kinnersley, N., Ward, P. and Mills, R.G. Efficacy and safety of oral neuraminidase Inhibitor oseltamivir in treating acute influenza: A randomized controlled trial. JAMA 283 (2000) 1016–1024.

    PubMed  Article  CAS  Google Scholar 

  29. Monto, A.S., Webster, A. and Keene, O. Randomized, placebo-controlled studies of inhaled zanamivir in the treatment of influenza A and B: Pooled efficacy analysis. J. Antimicrob. Chemother. 44 (1999) 23–29.

    PubMed  Article  CAS  Google Scholar 

  30. Peltola, V.T., Murti, K.G. and McCullers, J.A. Influenza virus neuraminidase contributes to secondary bacterial pneumonia. J Infect Dis. 192 (2005) 249–257.

    PubMed  Article  CAS  Google Scholar 

  31. Peltola, V.T. and McCullers, J.A. Respiratory viruses predisposing to bacterial infections: role of neuraminidase. Pediatr. Infect. Dis. J. 23 (Suppl.1) (2004) S87–97.

    PubMed  Article  Google Scholar 

  32. Yen, H.L., Herlocher, L.M., Hoffmann, E., Matrosovich, M.N., Monto, A.S., Webster, R.G. and Govorkova, E.A. Neuraminidase inhibitor-resistant influenza viruses may differ substantially in fitness and transmissibility. Antimicrob. Agents Chemother. 49 (2005) 4075–4084.

    PubMed  Article  CAS  Google Scholar 

  33. Roberts, N. Treatment of influenza with neuraminidase inhibitors: Virological implications. Phil. Trans. R. Soc. Lond. 356 (2001) 1895–1897.

    Article  CAS  Google Scholar 

  34. Wakai, K., Nakai, S., Matsuo, S., Kawamura, T., Hotta, N., Maeda, K. and Ohno, Y. Risk factors for IgA nephropathy: A case-control study with incident cases in Japan. Nephron 90 (2002) 16–23.

    PubMed  Article  Google Scholar 

  35. Xu, L.X. and Zhao, M.H. Aberrantly glycosylated serum IgA1 are closely associated with pathologic phenotypes of IgA nephropathy. Kidney Int. 68 (2005) 167–172.

    PubMed  Article  CAS  Google Scholar 

  36. Altschuler, E.L., Bhatia, A. and Kast, R.E. Consideration of use of neuraminidase inhibitors such as oseltamivir and zanamivir in IgA nephropathy. Kidney Int. 68 (2005) 2910–2911.

    PubMed  Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Richard E. Kast.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bhatia, A., Kast, R.E. How influenza’s neuraminidase promotes virulence and creates localized lung mucosa immunodeficiency. Cell Mol Biol Lett 12, 111–119 (2007).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Key words

  • Asialoglycoprotein receptor
  • IgA
  • Immunodeficiency
  • Influenza
  • Lymphocyte homing
  • Neuraminidase
  • Oseltamivir
  • Sialic acid
  • Zanamivir