Skip to main content

Differences in the degree of inhibition of NDP reductase by chemical inactivation and by the thermosensitive mutation nrdA101 in Escherichia coli suggest an effect on chromosome segregation

Abstract

NDP reductase activity can be inhibited either by treatment with hydroxyurea or by incubation of an nrdA ts mutant strain at the non-permissive temperature. Both methods inhibit replication, but experiments on these two types of inhibition yielded very different results. The chemical treatment immediately inhibited DNA synthesis but did not affect the cell and nucleoid appearance, while the incubation of an nrdA101 mutant strain at the non-permissive temperature inhibited DNA synthesis after more than 50 min, and resulted in aberrant chromosome segregation, long filaments, and a high frequency of anucleate cells. These phenotypes are not induced by SOS. In view of these results, we suggest there is an indirect relationship between NDP reductase and the chromosome segregation machinery through the maintenance of the proposed replication hyperstructure.

Abbreviations

Cef:

cephalexin

HU:

hydroxyurea

NDP reductase:

ribonucleoside diphosphate reductase

References

  1. 1.

    Eklund, H., Uhlin, U., Färnegardh, M., Logan, D.T. and Nordlund, P. Structure and function of the radical enzyme ribonucleotide reductase. Prog. Biophys. Mol. Biol. 77 (2001) 177–268.

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Werner, R. Nature of DNA precursors. Nature New Biol. 233 (1971) 99–103.

    PubMed  CAS  Google Scholar 

  3. 3.

    Pato, M.L. Alterations of deoxyribonucleoside triphosphate pools in E. coli: Effects on deoxyribonucleic acid replication and evidence for compartmentation. J. Bacteriol. 140 (1979) 518–524.

    PubMed  CAS  Google Scholar 

  4. 4.

    Mathews, C.K. Enzyme organization in DNA precursor biosynthesis. Prog. Nucleic Acid Res. 44 (1993) 167–203.

    CAS  Article  Google Scholar 

  5. 5.

    Kim, J., Wheeler, L.J., Shen, R. and Mathews, C.K. Protein-DNA interactions in the T4 dNTP synthetase complex dependent on gene 32 single-stranded DNA-binding protein. Mol. Microbiol. 55 (2005) 1502–1514.

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Huisman, O., D’ari, R. and Gottesman, S. Cell-division control in E. coli: Specific induction of the SOS function SfiA protein is sufficient to block septation. Proc. Natl. Acad. Sci. USA 81 (1984) 4490–4494.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Bi, E. and Lutkenhaus, J. Cell division inhibitors SulA and MinCD prevent formation of the FtsZ ring. J. Bacteriol. 175 (1993) 1118–1125.

    PubMed  CAS  Google Scholar 

  8. 8.

    Mukherjee, A., Cao, C. and Lutkenhaus, J. Inhibition of FtsZ polymerization by SulA, an inhibitor of septation in Escherichia coli. Proc. Natl. Acad. Sci. USA 95 (1998) 2885–2890.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    D’Ari, R. and Huisman, O. Novel mechanism of cell division inhibition associated with the SOS response in Escherichia coli. J. Bacteriol. 156 (1983) 243–250.

    PubMed  CAS  Google Scholar 

  10. 10.

    Hill, T.M., Sharma, B., Valjavec-Gratian, M. and Smith, J. sfi-independent filamentation in Escherichia coli is lexA dependent and requires DNA damage for induction. J. Bacteriol. 179 (1997) 1931–1939.

    PubMed  CAS  Google Scholar 

  11. 11.

    Jaffe, A., D’Ari, R. and Norris, V. SOS-independent coupling between DNA replication and cell division in E. coli. J. Bacteriol. 165 (1986) 66–71.

    PubMed  CAS  Google Scholar 

  12. 12.

    Guzmán, E.C., Caballero, J.L. and Jiménez-Sánchez, A. Ribonucleoside diphosphate reductase is a component of the replication hyperstructure in Escherichia coli. Mol. Microbiol. 43 (2002) 487–495.

    PubMed  Article  Google Scholar 

  13. 13.

    Guzmán, E.C., Guarino, E., Riola, J. and Jiménez-Sánchez, A. Ribonucleoside diphosphate reductase is a functional and structural component of the replication hyperstructure in Escherichia coli. Rec. Res. Devel. Mol. Biol. 1 (2003) 29–43.

    Google Scholar 

  14. 14.

    Molina, F. and Skarstad, K. Replication fork and SeqA focus distributions in Escherichia coli suggest a replication hyperstructure dependent on nucleotide metabolism. Mol. Microbiol. 52 (2004) 1597–1612.

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Skarstad, K., Stenn, H.B. and Boye, E. E. coli DNA distribution measured by flow cytometry and compared with theoretical computer simulations. J. Bacteriol. 163 (1985) 661–668.

    PubMed  CAS  Google Scholar 

  16. 16.

    Taschner, P.E.M., Verest, J.G. and Woldringh, C.L. Genetic and morphological characterization of ftsB and nrdB mutants of E. coli. J. Bacteriol. 169 (1987) 19–25.

    PubMed  CAS  Google Scholar 

  17. 17.

    Fuchs, J.A., Karlström, H.O., Warner H.R. and Reichard, P. Defective gene product in dnaF mutant of E. coli. Nature 238 (1972) 69–71.

    Article  CAS  Google Scholar 

  18. 18.

    Norris, V., Alexandre, S., Bouligand, Y., Cellier, D., Demarty, M., Grehan, G., Gouesbet, G., Guespin, J., Insinna, E., Sceller, L.L., Maheu, B., Monnier, C., Grant, N., Onoda, T., Orange, N., Oshima, A., Picton, L., Polaert, H., Ripoll, C., Thellier, M., White, G. and Wiggins, P. Hypothesis: hyperstructures regulate bacterial structure and the cell cycle. Biochimie 81 (1999) 915–920.

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Grompe, M., Versalovic, J., Koeuth, T. and Lupski, J.R. Mutations in the Escherichia coli dnaG gene suggest coupling between DNA replication and chromosome partitioning. J. Bacteriol. 173 (1991) 1268–1278.

    PubMed  CAS  Google Scholar 

  20. 20.

    Mulder, E. and Woldringh C.L. Actively replicating nucleoids influence positioning of division sites in Escherichia coli filaments forming cells lacking DNA. J. Bacteriol. 171 (1989) 4303–4314.

    PubMed  CAS  Google Scholar 

  21. 21.

    Kang, S., Han, J.S., Park, J.H., Skarstad. K. and Hwang, D.S. SeqA protein stimulates the relaxing and decatenating activities of topoisomerase IV. J. Biol. Chem. 278 (2003) 48779–48785.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Weiss, D.S. Bacterial cell division and the septal ring. Mol. Microbiol. 54 (2004) 588–597.

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Lemon, K.P. and Grossman, A.D. Localization of bacterial DNA polymerase: Evidence for a factory model of replication. Science 282 (1998) 1516–1519.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Harry, E.J. Bacterial cell division: regulating Z-ring formation. Mol. Microbiol. 40 (2001) 795–803.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alfonso Jiménez-Sánchez.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Riola, J., Guarino, E., Guzmán, E.C. et al. Differences in the degree of inhibition of NDP reductase by chemical inactivation and by the thermosensitive mutation nrdA101 in Escherichia coli suggest an effect on chromosome segregation. Cell Mol Biol Lett 12, 70–81 (2007). https://doi.org/10.2478/s11658-006-0060-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-006-0060-0

Key words

  • NDP reductase
  • Hyperstructure
  • Chromosome segregation
  • Hydroxyurea