- Published:
The influence of protons and zinc ions on the steady-state inactivation of Kv1.3 potassium channels
Cellular & Molecular Biology Letters volume 12, pages 220–230 (2007)
Abstract
Using the whole-cell patch-clamp technique, we investigated the influence of extracellular pH and zinc ions (Zn2+) on the steady-state inactivation of Kv1.3 channels expressed in human lymphocytes. The obtained data showed that lowering the extracellular pH from 7.35 to 6.8 shifted the inactivation midpoint (Vi) by 17.4 ± 1.12 mV (n = 6) towards positive membrane potentials. This shift was statistically significant (p < 0.05). Applying 100 μM Zn2+ at pH 6.8 further shifted the Vi value by 16.55 ± 1.80 mV (n = 6) towards positive membrane potentials. This shift was also statistically significant (p < 0.05). The total shift of the Vi by protons and Zn2+ was 33.95 ± 1.90 mV (n = 6), which was significantly higher (p < 0.05) than the shift caused by Zn2+ alone. The Zn2+-induced shift of the Vi at pH 6.8 was almost identical to the shift at pH = 7.35. Thus, the proton-and Zn2+-induced shifts of the Vi value were additive. The steady-state inactivation curves as a function of membrane voltage were compared with the functions of the steady-state activation. The total shift of the steady-state inactivation was almost identical to the total shift of the steady-state activation (32.01 ± 2.10 mV, n = 10). As a result, the “windows” of membrane potentials in which the channels can be active under physiological conditions were also markedly shifted towards positive membrane potentials. The values of membrane voltage and the normalised chord conductance corresponding to the points of intersection of the curves of steady-state activation and inactivation were also calculated. The possible physiological significance of the observed modulatory effects is discussed herein.
Abbreviations
- gKnorm :
-
normalised relative chord conductance
- gKSSnorm :
-
steady-state normalised relative chord conductance
- ki :
-
steepness of the voltage dependence (inactivation)
- kn :
-
steepness of the voltage dependence (activation)
- pHo :
-
extracellular pH
- TL:
-
human T lymphocytes
- Vi :
-
inactivation midpoint
- Vn :
-
activation midpoint
- Zn2+ :
-
zinc ions
References
Frederickson, C., Klitenick, M., Menton, W. and Kirpatrick, J. Cytoarchitectonic distribution of zinc in the hippocampus of man and the rat.Brain Res. 273 (1983) 335–339.
Harrison, N. and Gibbons, S. Zinc: an endogenous modulator of ligand and voltage-gated ion channels.Neuropharmacol. 33 (1994) 935–952.
Lewis, R. and Cahalan, M. Potassium and calcium channels in lymphocytes.Annu. Rev. Immunol. 13 (1995) 623–653.
Teisseyre, A. Voltage-gated potassium channels in T lymphocytes-physiological role and changes in channel properties in diseases.Cell. Mol. Biol. Lett. 1 (1996) 337–351.
Shieh, Ch., Coghlan, M., Sullivan, J. and Gopalakrishan, M. Potassium channels: molecular defects, diseases and therapeutic opportunities.Pharmacol. Rev. 52 (2000) 557–593.
Cahalan, M., Wulff, H. and Chandy, K. Molecular properties and physiological roles of ion channels in the immune system.J. Clin. Immunol. 21 (2001) 235–252.
Veh, R., Lichtinghagen, R., Sewing, S., Wunder, F., Grumbach, I. and Pongs, O. Immunohistochemical localization of five members of the Kv1 channel subunits: contrasting subcellular locations and neuron-specific co-localizations in rat brain.Eur. J. Neurosci. 7 (1995) 2189–2205.
Kupper, J., Prinz, A. and Fromherz, P. Recombinant Kv1.3 potassium channels stabilize tonic firing of cultured rat hippocampal neurons.Pflügers Arch. 443 (2002) 541–547.
Colley, B., Tucker, K. and Fadool, D. Comparison of modulation of Kv1.3 channel by two receptor tyrosine kinases in olfactory bulb neurons of rodents.Rec. Channels 10 (2004) 25–36.
Mackenzie, A., Chirakkal, H. and North, A. Kv1.3 potassium channels in human alveolar macrophages.Am. J. Physiol. Lung Cell. Mol. Physiol. 285 (2003) L862–L868.
Speake, T., Kibble, J. and Brown, P. Kv1.1 and Kv1.3 channels contribute to the delayed-rectifying conductance in rat choroid plexus epithelial cells.Am. J. Physiol. Cell Physiol. 286 (2004) C611–C620.
Grunnet, M., Rasmussen, H., Hay-Schmidt, A. and Klaerke, D. The voltage-gated potassium channel subunit, Kv1.3, is expressed in epithelia.Biochim. Biophys. Acta 1616 (2003) 85–94.
Preuβat, K., Beetz, Ch., Schrey, M., Kraft, R., Wölfl, S., Kalff, R. and Patt, S. Expression of voltage-gated potassium channels Kv1.3 and Kv1.5 in human gliomas.Neurosci. Lett. 346 (2003) 33–36.
Fraser, S., Grimes, J., Diss, J., Stewart, D., Dolly, J. and Djamgoz, M. Predominant expression of Kv1.3 voltage-gated K+ channel subunit in rat prostate cancer cell lines: electrophysiological, pharmacological and molecular characterisation.Pflügers Arch. 446 (2003) 559–571.
Teisseyre, A. and Mozrzymas, J.W. Inhibition of the activity of T lymphocyte Kv1.3 channels by extracellular zinc.Biochem. Pharmacol. 64 (2002) 595–607.
Teisseyre, A. and Mozrzymas, J.W. Influence of extracellular pH on the modulatory effect of zinc ions on Kv1.3 potassium channels.J. Physiol. Pharmacol. 57 (2006) 131–147.
Teisseyre, A. and Mozrzymas, J.W. [Influence of pH on the modulatory effect of zinc ions on the activity of Kv1.3 potassium channels] Acta Universitatis Lodziensis, Folia Biologica et Oecologica [Proc. V-Polish wide Conference: “Electrophysiological techniques in investigations of bioelectrical phenomena: from ion channels to neuronal networks”], Łódź, Poland, 2006, 31–40.
Deutsch, C. and Lee, S. Modulation of K+ currents in human lymphocytes by pH.J. Physiol. 413 (1989) 399–413.
Hirano, T., Kuritani, T., Kishimoto, Y. and Yamamura, Y. T cell dependency of PWM-induced Ig production by B cells.J. Immunol. 119 (1977) 1235–1242.
Grissmer, S., Nguyen, A. and Cahalan, M. Calcium-activated potassium channels in resting and activated human T lymphocytes.J. Gen. Physiol. 102 (1993) 601–630.
Hamill, O., Marty, A., Neher, E., Sakmann, B. and Sigworth, F. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches.Pflügers Arch. 391 (1981) 85–100.
Somodi, S., Varga, Z., Hajdu, P., Starkus, J., Levy, D., Gaspar, R. and Panyi, G. PH-dependent modulation of Kv1.3 inactivation: role of His 399. Am. J. Physiol. Cell Physiol. 287 (2004) C1067–C1076.
Reardon, C. and Lucas, D. Heavy-metal mitogenesis: Zn and Hg induce cellular cytotoxicity and interferon production in murine T lymphocytes.Immunobiology 175 (1987) 455–469.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Teisseyre, A., Mozrzymas, J.W. The influence of protons and zinc ions on the steady-state inactivation of Kv1.3 potassium channels. Cell Mol Biol Lett 12, 220–230 (2007). https://doi.org/10.2478/s11658-006-0067-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.2478/s11658-006-0067-6