Skip to main content

Phenol red in the culture medium strongly affects the susceptibility of human MCF-7 cells to roscovitine

Abstract

Estrogens play an important role in the growth and terminal differentiation of the mammary gland. Prolonged exposure to estrogens seems to predispose women to breast cancer. It recently became evident that not only the intrinsic hormonal status but also external factors such as the occurrence of pharmaceuticals and chemicals with hormone activity in the environment may put women at greater risk of developing breast cancer. We focused on the interference of endocrine disruptors in breast cancer therapy. We observed that phenol red added to the culture medium strongly promoted the cell proliferation and cell cycle progression of human cells expressing the estrogen receptor, and affected their susceptibility to chemotherapy.

Abbreviations

AIF:

apoptosis inducing factor

CDK:

cyclin-dependent kinase

EDC:

endocrine disrupting compounds

ER:

estrogen receptor

FCS:

foetal calf serum

PBS:

phosphate-buffered saline

ROSC:

roscovitine

WCL:

whole cell lysates

wt:

wild-type

References

  1. Hulka, B.S. and Stark, A.T. Breast cancer: cause and prevention. Lancet 346 (1995) 883–887.

    Article  CAS  PubMed  Google Scholar 

  2. Martin, A.M. and Weber, B.L. Genetic and hormonal risk factors in breast cancer. J. Natl. Cancer Inst. 92 (2000) 1126–1135.

    Article  CAS  PubMed  Google Scholar 

  3. Green, S., Walter, P., Kumar, V., Krust, A., Bornert, J.M, Argos, P. and Chambon, P. Human oestrogen receptor cDNA: sequence, expression and homology to v-erb A. Nature 320 (1986) 134–139.

    Article  CAS  PubMed  Google Scholar 

  4. Greene, G.L, Gilna, P., Waterfield, M., Baker, A., Hort, Y. and Shine, J. Sequence and expression of human estrogen receptor complementary DNA. Science 231 (1986) 1150–1154.

    Article  CAS  PubMed  Google Scholar 

  5. Kuiper, G.G., Enmark, E., Pelto-Huikko, M., Nilsson, S. and Gustafsson, J.A. Cloning of a novel receptor expressed in rat prostate and ovary. Proc. Natl. Acad. Sci. USA 93 (1996) 5925–5930.

    Article  CAS  PubMed  Google Scholar 

  6. Evans, R.M. The steroid and thyroid hormone receptor superfamily. Science 240 (1988) 889–895.

    Article  CAS  PubMed  Google Scholar 

  7. Beato, M. Gene regulation by steroid hormones. Cell 56 (1989) 335–344.

    Article  CAS  PubMed  Google Scholar 

  8. Ham, J. and Parker, M.G. Regulation of gene expression by nuclear hormone receptors. Curr. Opin. Cell Biol. 1 (1989) 503–511.

    Article  CAS  PubMed  Google Scholar 

  9. Gronemeyer, H. Transcription activation by extrogen and progesteron receptors. Annu. Rev. Gen. 25 (1991) 89–123.

    Article  CAS  Google Scholar 

  10. Sukovich, D.A., Mukherjee, R. and Benfield, P.A. A novel, cell-type specific mechanism for estrogen receptor-mediated gene activation in the absence of an estrogen-responsive element. Mol. Cell. Biol. 14 (1994) 7134–7143.

    CAS  PubMed  Google Scholar 

  11. Liu, J. and Sidell, N. Anti-estrogenic effects of conjugated linoleic acid through modulation of estrogen receptor phosphorylation. Breast Cancer Res. Treat. 94 (2005) 161–169.

    Article  CAS  PubMed  Google Scholar 

  12. Devarajan, E., Sahin, A.A., Chen, J.S., Krishnamurthy, R.R., Aggarwal, N., Brun, A.M., Saprino, A., Zhang, F., Sharma, D., Yang, X.H. Tora, A.D. and Mehta, K. Down-regulation of caspase-3 in breast cancer: a possible mechanism for chemoresistance. Oncogene 21 (2002) 8843–8851.

    Article  CAS  PubMed  Google Scholar 

  13. Wesierska Gadek, J., Gueorguieva, M. and Horky, M. Dual action of cyclin-dependent kinase inhibitors: induction of cell cycle arrest and apoptosis. A comparison of the effects exerted by roscovitine and cisplatin. Polish J. Pharmacol. 55 (2003) 895–902.

    CAS  Google Scholar 

  14. Jänicke, R.U., Sprengart, M.L., Wati, M.R. and Porter, A.G. Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J. Biol. Chem. 273 (1998) 9357–9360.

    Article  PubMed  Google Scholar 

  15. Yonish-Rouach, E., Resnitzky, D., Lotem, J., Sachs, L., Kimchi, A. and Oren, M. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 352 (1991) 345–347.

    Article  CAS  PubMed  Google Scholar 

  16. Kovar, H., Jug, G., Printz, D., Bartl, S., Schmid, G. and Wesierska-Gadek, J. Characterization of distinct consecutive phases in non-genotoxic p53-induced apoptosis of Ewing tumor cells and the rate-limiting role of caspase 8. Oncogene 19 (2000) 4096–4107.

    Article  CAS  PubMed  Google Scholar 

  17. Haupt, S., Berger, M., Goldberg, Z. and Haupt, Y. Apoptosis — the p53 network. J. Cell Sci. 116 (2003) 4077–4085.

    Article  CAS  PubMed  Google Scholar 

  18. Oda, K., Arakawa, H., Tanaka, T., Matsuda, K., Tanikawa, C., Mori, T., Nishimori, H., Tamai, K., Tokino, T., Nakamura, Y. and Taya, Y. p53AIP1, a potent mediator of p53-dependent apoptosis, and its regulation bySer-46-phosphorylated p53. Cell 102 (2000) 849–862.

    Article  CAS  PubMed  Google Scholar 

  19. Matsuda, K., Yoshida, K., Taya, Y., Nakamura, K., Nakamura, Y. and Arakawa, H. p53AIP1 regulates the mitochondrial apoptotic pathway. Cancer Res. 62 (2002) 2883–2889.

    CAS  PubMed  Google Scholar 

  20. Wojciechowski, J., Horky, M., Gueorguieva, M. and Wesierska-Gadek, J. Rapid onset of nucleolar disintegration preceding cell cycle arrest in roscovitine-induced apoptosis of human MCF-7 breast cancer cells. Int. J. Cancer 106 (2003) 486–495.

    Article  CAS  PubMed  Google Scholar 

  21. Wesierska Gadek, J., Gueorguieva, M. and Horky, M. Roscovitine-induced up-regulation of p53AIP1 protein precedes the onset of apoptosis in human MCF-7 breast cancer cells. Mol. Cancer Ther. 4 (2005) 113–124.

    CAS  PubMed  Article  Google Scholar 

  22. Wesierska-Gadek, J., Schreiner, T., Gueorguieva, M. and Ranftler, C. Phenol red reduces ROSC mediated cell cycle arrest and apoptosis in human MCF-7 cells. J. Cell. Biochem. 98 (2006) 1367–1379.

    Article  CAS  PubMed  Google Scholar 

  23. Wesierska-Gadek, J., Schloffer, D., Gueorguieva, M., Uhl, M. and Skladanowski, A. Increased susceptibility of poly(ADP-ribose) polymerase-1 knockout cells to antitumor triazoloacridone C-1305 is associated with permanent G2 cell cycle arrest. Cancer Res. 64 (2004) 4487–4497.

    Article  CAS  PubMed  Google Scholar 

  24. Wesierska-Gadek, J., Gueorguieva, M., Ranftler, C. and Zerza-Schnitzhofer, G. A new multiplex assay allowing simultaneous detection of the inhibition of cell proliferation and induction of cell death. J. Cell. Biochem. 96 (2005) 1–7.

    Article  CAS  PubMed  Google Scholar 

  25. Wesierska-Gadek, J. and Schmid, G. Overexpressed poly(ADP-ribose) polymerase delays the release of rat cells from p53-mediated G1 checkpoint. J. Cell. Biochem. 80 (2000) 85–103.

    CAS  PubMed  Article  Google Scholar 

  26. Vindelov, L.L., Christensen, I.J. and Nissen, N.J. A detergent-trypsin method for the preparation of nuclei for flow cytometric DNA analysis. Cytometry 3 (1983) 323–327.

    Article  CAS  PubMed  Google Scholar 

  27. Schiff, R. and Fuqua S. 2002. The importance of the estrogen receptor in breast cancer. In: Pasqualini L. (ed.) Breast cancer: prognosis, treatment and prevention. Marcel Dekker Inc. New York, pp. 149–186.

    Google Scholar 

  28. Speirs, V. Oestrogen receptor beta in breast cancer: good, bad or still to early to tell? J. Pathol. 19 (2002) 143–147.

    Article  CAS  Google Scholar 

  29. Parl, F.F. 2000. Estrogens, estrogen receptors and breast cancer. IOS Press, Ohmsha, Amsterdam.

    Google Scholar 

  30. Hall, J.M., Couse, J.F. and Korrach, K.S. The multifaceted mechanisms of estradiol and estrogen receptor signaling. J. Biol. Chem. 276 (2001) 36869–36872.

    Article  CAS  PubMed  Google Scholar 

  31. Hilakivi-Clarke, L. Estrogens, BRCA1, and breast cancer. Cancer Res. 60 (2000) 4993–5001.

    CAS  PubMed  Google Scholar 

  32. Marquis, S.T., Rajan, J.V., Wynshaw-Boris, A., Xu, J., Yin, G-Y., Abel, K.J., Weber, B. and Chodosh, L.A. The developmental pattern of Brca1 expression implies a role in differentiation of the breast and other tissues. Nature Genet. 11 (1995) 17–26.

    Article  CAS  PubMed  Google Scholar 

  33. Gudas, J.M., Nguyen, H., Li, T. and Cowan, K.H. Hormone-dependent regulation of BRCA1 in human breast cancer cells. Cancer Res. 55 (1995) 4561–4565.

    CAS  PubMed  Google Scholar 

  34. Spillman, M.A. and Bowcock, A.M. BRCA1 and BRCA2 mRNA levels are coordinately elevated in human breast cancer cells in response to estrogen. Oncogene 13 (1996) 1639–1645.

    CAS  PubMed  Google Scholar 

  35. Hurd, C., Khattree, N., Dinda, S., Alban, A. and Moudgil, V.K. Regulation of tumor suppressor proteins, p53 and retinoblastoma, by estrogen and antiestrogens in breast cancer cells. Oncogene 15 (1997) 991–995.

    Article  CAS  PubMed  Google Scholar 

  36. Berthois, Y., Katzenellenbogen, J.A. and Katzenellenbogen, B.S. Phenol red in tissue culture media is a weak estrogen: Implications concerning the study of estrogen-responsive cells in culture. Proc. Natl. Acad. Sci. USA 83 (1986) 2496–2500.

    Article  CAS  PubMed  Google Scholar 

  37. Zwijsen, R.M., Wientjens, E., Klompmaker, R., van der Sman, J., Bernards, E. and Michalides, R.J. CDK-independent activation of estrogen receptor by cyclin D1. Cell 88 (1997) 405–415.

    Article  CAS  PubMed  Google Scholar 

  38. Neuman, E., Ladha, M.H., Lin, N., Upton, T.M., Miller, S.J., DiRenzo, J., Pestell, R.G., Hinds, P.W., Dowdy, S.F., Brown, M. and Ewen, M.E. Cyclin D1 stimulation of estrogen receptor transcriptional activity independent of cdk4. Mol. Cell. Biol. 17 (1997) 5338–5347.

    CAS  PubMed  Google Scholar 

  39. Martin, L.A., Farmer, I., Johnston, S.R., Ali, S., Marshall, C. and Dowsett, M. Enhanced estrogen receptor (ER)α, ERBB2, and MAPK signal transduction pathways during the adaptation of MCF-7 cells to long term estrogen deprivation. J. Biol. Chem. 278 (2003) 30458–30468.

    Article  CAS  PubMed  Google Scholar 

  40. Santen, R.J., Lobenhofer, E.K., Afshari, C.A., Bao, Y. and Song, R.X. Adaptation of estrogen-regulated genes in long-term estradiol deprived MCF-7 breast cancer cells. Breast Cancer Res. Treat. 94 (2005) 213–223.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Józefa Węsierska-Gądek.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Węsierska-Gądek, J., Schreiner, T., Maurer, M. et al. Phenol red in the culture medium strongly affects the susceptibility of human MCF-7 cells to roscovitine. Cell Mol Biol Lett 12, 280–293 (2007). https://doi.org/10.2478/s11658-007-0002-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-007-0002-5

Key words

  • Endocrine disrupters
  • Apoptosis
  • Cell cycle arrest
  • Cyclin-dependent inhibitors