Skip to main content

Post-transcriptional modifications of VEGF-A mRNA in non-ischemic dilated cardiomyopathy


Vascular endothelial growth factor (VEGF-A) is one of the most important proangiogenic factors. It has many isoforms encoded by one gene. The occurrence of these isoforms is associated with the process of alternative splicing of mRNA. Some of the splice forms are perceived as tissue specific. The aim of this study was to determine the alternative splicing of VEGF-A mRNA in dilated cardiomyopathy, especially at the level of particular myocardial layers. The assessment of post-transcriptional modifications of VEGF-A mRNA was made on specimens taken from the explanted hearts of patients undergoing cardiac transplantation. Molecular and histopathological studies were perfomed on particular layers of the myocardial muscle (endocardium, myocardium, epicardium). A molecular analysis of cardiac samples was performed by quantitative analysis of the mRNA of the studied VEGF-A isoforms (VEGF121, -145, -165, -183, -189, and -206) using QRTPCR with an ABI-PRISM 7700-TaqMan sequence detector. 72 cardiac specimens taken from the explanted hearts were analyzed. Each of the studied VEGF-A splice forms was present in the evaluated hearts, but the types of alternative splicing of mRNA were different in particular layers. Quantitative analysis revealed different amounts of the studied isoforms. Generally, significantly increased expression of the VEGF-A isoforms was observed in samples taken from hearts with post-inflammatory etiology of cardiomyopathy. Our conclusions are: 1. All the studied VEGF-A isoforms were found in the human hearts, including those thusfar considered characteristic for other tissues. 2. Significant differences were observed in the expression of the VEGF-A splice forms with respect to the myocardial layers and the location of the cardiac biopsy. 3. Repetitive and comparable results for samples with post-inflammatory etiology were obtained, and they revealed considerably higher amounts of VEGF-A isoforms compared to specimens with idiopathic etiology.



dilated cardiomyopathy


interventricular septum


vascular endothelial growth factor


  1. 1.

    Ferrara, N. and Davis-Smyth, T. The biology of vascular endothelial growth factor. Endocr. Rev. 18 (1997) 4–25.

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Poltorak, Z., Cohen, T. and Neufeld, G. The VEGF splice variants: properties, receptors, and usage for the treatment of ischemic diseases. Herz 25 (2000) 126–129.

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Kroll, J. and Waltenberger, J. Regulation of the endothelial function and angiogenesis by vascular endothelial growth factor-A (VEGF-A). Z. Kardiol. 89 (2000) 206–218.

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Kowalczyk, J. and Pasyk, S. Vascular endothelial growth factor and its application in therapy of cardiovascular diseases. Pol. Merkur. Lekarski 13 (2002) 74–78.

    PubMed  Google Scholar 

  5. 5.

    Breslin, J.W., Pappas, P.J., Cerveira, J.J., Hobson, R.W. and Duran, W.N. VEGF increases endothelial permeability by separate signaling pathways involving ERK-1/2 and nitric oxide. Am. J. Physiol. Heart Circ. Physiol. 284 (2003) H92–H100.

    PubMed  CAS  Google Scholar 

  6. 6.

    Whittle, C., Gillespie, K., Harrison, R., Mathieson, P.W. and Harper, S.J. Heterogeneous vascular endothelial growth factor (VEGF) isoform mRNA and receptor mRNA expression in human glomeruli, and the identification of VEGF148 mRNA, a novel truncated splice variant. Clin. Sci. 97 (1999) 303–312.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Vincenti, V., Cassano, C., Rocchi, M. and Persico, G. Assignment of the vascular endothelial growth factor gene to the human chromosome 6p21.3. Circulation 93 (1996) 1493–1495.

    PubMed  CAS  Google Scholar 

  8. 8.

    Gitay-Goren, H., Cohen, T., Tessler, S., Soker, S., Gengrinovitch, S., Rockwell, P., Klagsbrun, M., Levi, B.Z. and Neufeld, G. Selective binding of VEGF121 to one of the three vascular endothelial growth factor receptors of vascular endothelial cells. J. Biol. Chem. 271 (1996) 5519–5523.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Michalski, B., Mazurek, U., Olejek, A., Graniczka, M., Loch, T., Poreba, R. and Wilczok, T. Quantitative RT-PCR assay for mRNA of VEGF and histone H4 in the determination of proliferative and angiogenic activity in vulvar pathology. Folia Histochem. Cytobiol. 39 Suppl 2 (2001) 108–109.

    PubMed  Google Scholar 

  10. 10.

    Michalski, B., Mazurek, U., Olejek, A., Kusmierz, D., Poreba, R., Witek, A. and Wilczok, T. Expression of VEGF, KDR, p53, E6 HPV16 and HPV18 in vulvar and cervix cancer. Wiad. Lek. 53 (2000) 240–246.

    PubMed  CAS  Google Scholar 

  11. 11.

    Bennett, K.R., Gu, J.W., Adair, T.H. and Heath, B.J. Elevated plasma concentration of vascular endothelial growth factor in cardiac myxoma. J. Thorac. Cardiovasc. Surg. 122 (2001) 193–194.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Broeders, M.A.W., Doevendans, P.A., Maessen, J.G., van Gorsel, E., Egbrink, M.G., Daemen, M.J., Tangelder, G.J., Reneman, R.S. and van der Zee, R. The human internal thoracic artery releases more nitric oxide in response to vascular endothelial growth factor than the human saphenous vein. J. Thorac. Cardiovasc. Surg. 122 (2001) 305–309.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Hojo, Y., Ikeda, U., Zhu, Y., Okada, M., Ueno, S., Arakawa, H., Fujikawa, H., Katsuki, T. and Shimada, K. Expression of vascular endothelial growth factor in patients with acute myocardial infarction. J. Am. Coll. Cardiol. 35 (2000) 968–973.

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Lee, S.H., Wolf, P.L., Escudero, R., Deutsch, R., Jamieson, S.W. and Thistlethwaite, P.A. Early expression of angiogenesis factors in acute myocardial ischemia and infarction. N. Engl. J. Med. 342 (2000) 626–633.

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Miraliakbari, R., Francalancia, N.A., Lust, R.M., Gerardo, J.A., Ng, P.C., Sun, Y.S. and Chitwood, W.R. Jr. Differences in myocardial and peripheral VEGF and KDR levels after acute ischemia. Ann. Thorac. Surg. 69 (2000) 1750–1753.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Soeki, T., Tamura, Y., Shinohara, H., Tanaka, H., Bando, K. and Fukuda, N. Serial changes in serum VEGF and HGF in patients with acute myocardial infarction. Cardiology 93 (2000) 168–174.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Kranz, A., Rau, C., Kochs, M. and Waltenberger, J. Elevation of vascular endothelial growth factor-A serum levels following acute myocardial infarction. Evidence for its origin and functional significance. J. Mol. Cell. Cardiol. 32 (2000) 65–72.

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Seko, Y., Fukuda, S. and Nagai, R. Serum levels of endostatin, vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) in patients with acute myocardial infarction undergoing early reperfusion therapy. Clin. Sci. 106 (2004) 439–442.

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Minchenko, A., Bauer, T., Salceda, S. and Caro, J. Hypoxic stimulation of vascular endothelial growth factor expression in vitro and in vivo. Lab. Invest. 71 (1994) 374–379.

    PubMed  CAS  Google Scholar 

  20. 20.

    Okuda, Y., Tsurumaru, K., Suzuki, S., Miyauchi, T., Asano, M., Hong, Y., Sone, H., Fujita, R., Mizutani, M., Kawakami, Y., Nakajima, T., Soma, M., Matsuo, K., Suzuki, H. and Yamashita, K. Hypoxia and endothelin-1 induce VEGF production in human vascular smooth muscle cells. Life Sci. 63 (1998) 477–484.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Tuder, R.M., Flook, B.E. and Voelkel, N.F. Increased gene expression for VEGF and the VEGF receptors KDR/flk and flt in lungs exposed to acute or chronic hypoxia. J. Clin. Invest. 95 (1995) 1798–1807.

    PubMed  CAS  Article  Google Scholar 

  22. 22.

    Tham, E., Wang, J., Piehl, F. and Weber, G. Upregulation of VEGF-A without angiogenesis in a mouse model of dilated cardiomyopathy caused by mitochondrial dysfunction. J. Histochem. Cytochem. 50 (2002) 935–944.

    PubMed  CAS  Google Scholar 

  23. 23.

    Abraham, D., Hofbauer, R., Schafer, R., Blumer, R., Paulus, P., Miksovsky, A., Traxler, H., Kocher, A. and Aharinejad, S. Selective downregulation of VEGF-A165, VEGF-R1, and decreased capillary density in patients with dilative but not ischemic cardiomyopathy. Circ. Res. 87 (2000) 644–647.

    PubMed  CAS  Google Scholar 

  24. 24.

    Kim, C.H., Cho, Y.S., Chun, Y.S., Park, J.W. and Kim, M.S. Early expression of myocardial HIF-1 alpha in response to mechanical stresses: regulation by stretch-activated channels and the phosphatidylinositol 3-kinase signaling pathway. Circ Res. 90 (2002) E25–E33.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Senger, D.R., Ledbetter, S.R., Claffey, K.P., Papadopoulos-Sergiou, A., Peruzzi, C.A. and Detmar, M. Stimulation of endothelial cell migration by vascular permeability factor/vascular endothelial growth factor through cooperative mechanisms involving the avb3 integrin, osteopontin, and thrombin. Am. J. Pathol. 149 (1996) 293–305.

    PubMed  CAS  Google Scholar 

  26. 26.

    Xu, F. and Severinghaus, J.W. Rat brain VEGF expression in alveolar hypoxia: possible role in high-altitude cerebral edema. J. Appl. Physiol. 85 (1998) 53–57.

    PubMed  CAS  Google Scholar 

  27. 27.

    Waltenberger, J., Kranz, A. and Beyer, M. Neovascularization in the human heart is associated with expression of VEGF-A and its receptors Flt-1 (VEGFR-1) and KDR (VEGFR-2). Results from cardiomyopexy in ischemic cardiomyopathy. Angiogenesis 3 (1999) 345–351.

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Michalski, B., Mazurek, U., Olejek, A., Loch, T., Graniczka, M., Poreba, R. and Wilczok, T. Expression patterns in isoforms of vascular endothelial growth-factors in tissue samples of vulval cancer T1N2M0 stage. Ginekol. Pol. 74 (2003) 40–47.

    PubMed  Google Scholar 

  29. 29.

    Baumgartner, I., Pieczek, A., Manor, O., Blair, R., Kearney, M., Walsh, K. and Isner, J.M. Constitutive expression of phVEGF165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia. Circulation 97 (1998) 1114–1123.

    PubMed  CAS  Google Scholar 

  30. 30.

    Freedman, S.B., Vale, P., Kalka, C., Kearney, M., Pieczek, A., Symes, J., Losordo, D. and Isner, J.M. Plasma vascular endothelial growth factor (VEGF) levels after intramuscular and intramyocardial gene transfer of VEGF-1 plasmid DNA. Hum. Gene Ther. 13 (2002) 1595–1603.

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Hendel, R.C., Henry, T.D., Rocha-Singh, K., Isner, J.M., Kereiakes, D.J., Giordano, F.J., Simons, M. and Bonow, R.O. Effect of intracoronary recombinant human vascular endothelial growth factor on myocardial perfusion: evidence for a dose-dependent effect. Circulation 101 (2000) 118–121.

    PubMed  CAS  Google Scholar 

  32. 32.

    Laitinen, M., Hartikainen, J., Hiltunen, M.O., Eranen, J., Kiviniemi, M., Narvanen, O., Makinen, K., Manninen, H., Syvanne, M., Martin, J.F., Laakso, M. and Yla-Herttuala, S. Catheter-mediated vascular endothelial growth factor gene transfer to human coronary arteries after angioplasty. Hum. Gene Ther. 11 (2000) 263–270.

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Leotta, E., Patejunas, G., Murphy, G., Szokol, J., McGregor, L., Carbray, J., Hamawy, A., Winchester, D., Hackett, N., Crystal, R. and Rosengart, T. Gene therapy with adenovirus-mediated myocardial transfer of vascular endothelial growth factor 121 improves cardiac performance in a pacing model of congestive heart failure. J. Thorac. Cardiovasc. Surg. 123 (2002) 1101–1113.

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Rajagopalan, S., Shah, M., Luciano, A., Crystal, R. and Nabel, E.G. Adenovirus-mediated gene transfer of VEGF121 improves lower-extremity endothelial function and flow reserve. Circulation 104 (2001) 753–755.

    PubMed  CAS  Google Scholar 

  35. 35.

    Rosengart, T.K., Lee, L.Y., Patel, S.R., Sanborn, T.A., Parikh, M., Bergman, G.W., Hachamovitch, R., Szulc, M., Kligfield, P.D., Okin, P.M., Hahn, R.T., Devereux, R.B., Post, M.R., Hackett, N.R., Foster, T., Grasso, T.M., Lesser, M.L., Isom, O.W. and Crystal, R.G. Angiogenesis gene therapy. Phase I assessment of direct intramyocardial administration of an adenovirus vector expressing VEGF121 cDNA to individuals with clinically significant severe coronary artery disease. Circulation 100 (1999) 468–474.

    PubMed  CAS  Google Scholar 

  36. 36.

    Schwarz, E.R., Speakman, M.T., Patterson, M., Hale, S.S., Isner, J.M., Kedes, L.H. and Kloner, R.A. Evaluation of the effects of intramyocardial injection of DNA expressing vascular endothelial growth factor (VEGF) in a myocardial infarction model in the rat — angiogenesis and angioma formation. J. Am. Coll. Cardiol. 35 (2000) 1323–1330.

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Symes, J.F., Losordo, D.W., Vale, P.R., Lathi, K.G., Esakof, D.D., Mayskiy, M. and Isner, J.M. Gene therapy with vascular endothelial growth factor for inoperable coronary artery disease. Ann. Thorac. Surg. 68 (1999) 830–836.

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Vale, P.R., Losordo, D.W., Milliken, C.E., Maysky, M., Esakof, D.D., Symes, J.F. and Isner, J.M. Left ventricular electromechanical mapping to assess efficacy of phVEGF165 gene transfer for therapeutic angiogenesis in chronic myocardial ischemia. Circulation 102 (2000) 965–974.

    PubMed  CAS  Google Scholar 

  39. 39.

    Houck, K.A., Ferrara, N., Winer, J., Cachianes, G., Li, B. and Leung, D.W. The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol. Endocrinol. 5 (1991) 1806–1814.

    PubMed  CAS  Article  Google Scholar 

  40. 40.

    Gruchlik, A., Domal-Kwiatkowska, D., Stojko, K., Smolik, S., Stojko, A., Mazurek, U. and Wilczok, T. Expression of VEGF-A, VEGF-B genes and Flk-1 and Flt-1 receptors in the kidneys of Sprague Dowley rats lacking a left artery descending into the coronary. Med. Weter. 60 (2004) 84–87.

    Google Scholar 

  41. 41.

    Veikkola, T., Karkkainen, M., Claesson-Welsh, L. and Alitalo, K. Regulation of angiogenesis via vascular endothelial growth factor receptors. Cancer Res. 60 (2000) 203–212.

    PubMed  CAS  Google Scholar 

  42. 42.

    Zheng, W., Seftor, E.A., Meininger, C.J., Hendrix, M.J. and Tomanek, R.J. Mechanisms of coronary angiogenesis in response to stretch: role of VEGF and TGF-β. Am. J. Physiol. Heart Circ. Physiol. 280 (2001) H909–H917.

    PubMed  CAS  Google Scholar 

  43. 43.

    Mehrabi, M.R., Ekmekcioglu, C., Stanek, B., Thalhammer, T., Tamaddon, F., Pacher, R., Steiner, G.E., Wild, T., Grimm, M., Spieckermann, P.G., Mall, G. and Glogar, H.D. Angiogenesis stimulation in explanted hearts from patients pre-treated with intravenous prostaglandin E(1). J. Heart Lung Transplant. 20 (2001) 465–473.

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    De Boer, R.A., Henning, R.H., Tio, R.A., Pinto, Y.M., Brouwer, R.M., Ploeg, R.J., Bohm, M., Van Gilst, W.H. and Van Veldhuisen, D.J. Identification of a specific pattern of downregulation in expression of isoforms of vascular endothelial growth factor in dilated cardiomyopathy. Heart 88 (2002) 412–414.

    PubMed  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Jacek Kowalczyk.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kowalczyk, J., Domal-Kwiatkowska, D., Mazurek, U. et al. Post-transcriptional modifications of VEGF-A mRNA in non-ischemic dilated cardiomyopathy. Cell Mol Biol Lett 12, 331–347 (2007).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Key words

  • Vascular endothelial growth factor (VEGF)
  • Alternative splicing
  • Angiogenesis
  • Dilated cardiomyopathy
  • Transcriptional activity