Skip to main content

Ultracentrifugation studies of the location of the site involved in the interaction of pig heart lactate dehydrogenase with acidic phospholipids at low pH. A comparison with the muscle form of the enzyme

Abstract

Lactate dehydrogenase (LDH) from the pig heart interacts with liposomes made of acidic phospholipids most effectively at low pH, close to the isoelectric point of the protein (pH = 5.5). This binding is not observed at neutral pH or high ionic strength. LDH-liposome complex formation requires an absence of nicotinamide adenine dinucleotides and adenine nucleotides in the interaction environment. Their presence limits the interaction of LDH with liposomes in a concentration-dependent manner. This phenomenon is not observed for pig skeletal muscle LDH. The heart LDH-liposome complexes formed in the absence of nicotinamide adenine dinucleotides and adenine nucleotides are stable after the addition of these substances even in millimolar concentrations. The LDH substrates and studied nucleotides that inhibit the interaction of pig heart LDH with acidic liposomes can be ordered according to their effectiveness as follows: NADH > NAD > ATP = ADP > AMP > pyruvate. The phosphorylated form of NAD (NADP), nonadenine nucleotides (GTP, CTP, UTP) and lactate are ineffective. Chemically cross-linked pig heart LDH, with a tetrameric structure stable at low pH, behaves analogously to the unmodified enzyme, which excludes the participation of the interfacing parts of subunits in the interaction with acidic phospholipids. The presented results indicate that in lowered pH conditions, the NADH-cofactor binding site of pig heart LDH is strongly involved in the interaction of the enzyme with acidic phospholipids. The contribution of the ATP/ADP binding site to this process can also be considered. In the case of pig skeletal muscle LDH, neither the cofactor binding site nor the subunit interfacing areas seem to be involved in the interaction.

Abbreviations

CL:

cardiolipin

EDTA:

(ethylenedinitrilo) tetraacetic acid

LAC:

lactate

LDH:

lactate dehydrogenase

MES:

2-morpholinoethanesulfonic acid

PS:

phosphatidylserine

PYR:

pyruvate

TRIS:

2-amino-2(hydroxymethyl)propane-1,3-diol

References

  1. 1.

    Aubert, A., Costalat, R., Magistretti, P.J. and Pellerin, L. Brain lactate kinetics: Modeling evidence for neuronal lactate uptake upon activation. Proc. Natl. Acad. Sci. USA 102 (2005) 16448–16453.

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Crawford, R.M., Budas, G.R., Jovanovic, S., Ranki, H.J., Wilson, T.J., Davies, A.M. and Jovanovic, A. M-LDH serves as a sarcolemmal K(ATP) channel subunit essential for cell protection against ischemia. EMBO J. 21 (2002) 3936–3948.

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Pioli, P.A., Hamilton, B.J., Connolly, J.E., Brewer, G. and Rigby, WF. Lactate dehydrogenase is an AU-rich element-binding protein that directly interacts with AUF1. J. Biol. Chem. 277 (2002) 35738–35745.

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Li, S.S. Lactate dehydrogenase isoenzymes A (muscle), B (heart) and C (testis) of mammals and the genes coding for these enzymes. Biochem. Soc. Trans. 2 (1989) 304–307.

    Google Scholar 

  5. 5.

    Li, S.S. Human and mouse lactate dehydrogenase genes A (muscle), B (heart), and C (testis): protein structure, genomic organization, regulation of expression, and molecular evolution. Prog. Clin. Biol. Res. 344 (1990) 75–99.

    PubMed  CAS  Google Scholar 

  6. 6.

    Read, J.A., Winter, V.J., Eszes, C.M., Sessions, R.B. and Brady, R.L. Structural basis for altered activity of M-and H-isozyme forms of human lactate dehydrogenase. Proteins 43 (2001) 175–185.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Wang, X.C., Jiang, L. and Zhou, H.M. Minimal functional unit of lactate dehydrogenase. J. Protein Chem. 3 (1997) 227–231.

    Article  Google Scholar 

  8. 8.

    King, L. and Weber, G. Conformational drift of dissociated lactate dehydrogenases. Biochemistry 25 (1986) 3632–3637.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Dabrowska, A. and Gutowicz, J. Interaction of bovine heart lactate dehydrogenase with erythrocyte lipids. Biochim. Biophys. Acta 855 (1986) 99–104.

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Dabrowska, A., Terlecki, G. and Gutowicz, J. Interaction of bovine skeletal muscle lactate dehydrogenase with liposomes. Comparison with the data for the heart enzyme. Biochim. Biophys. Acta 980 (1989) 357–360.

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Terlecki, G., Czapińska, E., Rogozik, K., Lisowski, M. and Gutowicz, J. Investigation of the interaction of pig muscle lactate dehydrogenase with acidic phospholipids at low pH. Biochim. Biophys. Acta 1758 (2006) 133–144.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Terlecki, G., Czapinska, E. and Gutowicz J. The role of lipid phase structure in the interaction of lactate dehydrogenase with phosphatidylserine. Activity studies. Cell. Mol. Biol. Lett. 7 (2002) 895–903.

    PubMed  CAS  Google Scholar 

  13. 13.

    Terlecki, G. and Gutowicz, J. Further evidence for the importance of lipid bilayers in the interaction between lactate dehydrogenase and phosphatidylserine. Cell. Mol. Biol. Lett. 7 (2002) 905–910.

    PubMed  CAS  Google Scholar 

  14. 14.

    Marsh, D. Handbook of Lipids Bilayers, CRC Press, Boca Raton, FL, 1990.

    Google Scholar 

  15. 15.

    Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72 (1976) 248–254.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Gottschalk, N. and Jaenicke, R. Chemically crosslinked lactate dehydrogenase: stability and reconstitution after glutaraldehyde fixation. Biotechnology and Applied Biochemistry 9 (1987) 387–400.

    Google Scholar 

  17. 17.

    18. Rouser, G., Siakatos, A.N. and Fleischer, S. Quantitative analysis of phospholipids by thin-layer chromatography and phosphorus analysis of spots. Lipids 1 (1966) 85–86.

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    Cabiaux, V., Vandenbranden, M., Falmagne, P. and Ruysschaert, J.M. Aggregation and fusion of lipid vesicles induced by diphtheria toxin at low pH: possible involvement of the P site and the NAD+ binding site. Biosci. Rep. 3 (1985) 243–250.

    Article  Google Scholar 

  19. 19.

    Cabiaux, V., Vandenbranden, M., Falmagne, P. and Ruysschaert, J.M. Diphtheria toxin induces fusion of small unilamellar vesicles at low pH. Biochim. Biophys. Acta 775 (1984) 31–36.

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Wittenberger, C.L. Kinetic studies on the inhibition of a (D(-)-specific lactate dehydrogenase by adenosine triphosphate. J. Biol. Chem. 243 (1968) 3067–3075.

    PubMed  CAS  Google Scholar 

  21. 21.

    Torres-da Matta, J., Batista e Silva, C. and Hasson-Voloch, A. Effect of ATP on purified L(+) lactate dehydrogenase from electric organ of Electrophorus electricus (L.). Int. J. Biochem. 18 (1986) 191–194.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Busto, F., de Arriaga, D. and Soler, J. ATP, ADP and AMP on the regulation of lactate dehydrogenase activity of Phycomyces blakesleeanus. Int. J. Biochem. 15 (1983) 73–78.

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Nemat-Gorgani, M. and Wilson, J.E. Acidic phospholipids may inhibit rat brain hexokinase by interaction at the nucleotide binding site. Arch. Biochem. Biophys. 236 (1985) 220–227.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Craig, D.B. and Wallace, C.J. ATP binding to cytochrome c diminishes electron flow in the mitochondrial respiratory pathway. Protein Sci. 2 (1993) 966–976.

    PubMed  CAS  Article  Google Scholar 

  25. 25.

    .Kimelberg, H.K and Lee, C.P. Binding and electron transfer to cytochrome c in artificial phospholipid membranes. Biochem. Biophys. Res. Commun. 34 (1969) 784–790.

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Vanderkooi, J., Erecinska, M. and Chance, B. Cytochrome c interaction with membranes. II. Comparative study of the interaction of c cytochromes with the mitochondrial membrane. Arch. Biochem. Biophys. 152 (1973) 531–540.

    Article  Google Scholar 

  27. 27.

    Mustonen, P., Virtanen, J.A., Somerharju, P.J. and Kinnunen, P.K. Binding of cytochrome c to liposomes as revealed by the quenching of fluorescence from pyrene-labeled phospholipids. Biochemistry 26 (1987) 2991–2997.

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Demel, R.A., Jordi, W., Lambrechts, H., van Damme, H., Hovius, R. and de Kruijff, B. Differential interactions of apo-and holocytochrome c with acidic membrane lipids in model systems and the implications for their import into mitochondria. J. Biol. Chem. 264 (1989) 3988–3997.

    PubMed  CAS  Google Scholar 

  29. 29.

    Nicholls, P. Cytochrome c binding to enzymes and membranes. Biochim. Biophys. Acta 346 (1974) 261–310.

    PubMed  CAS  Google Scholar 

  30. 30.

    Brown, L.R. and Wuthrich, K. NMR and ESR studies of the interactions of cytochrome c with mixed cardiolipin-phosphatidylcholine vesicles. Biochim. Biophys. Acta 468 (1977) 389–410.

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Rytomaa, M., Mustonen, P. and Kinnunen, P.K. Reversible, nonionic, and pH-dependent association of cytochrome c with cardiolipin-phosphatidylcholine liposomes. J. Biol. Chem. 267 (1992) 22243–22248.

    PubMed  CAS  Google Scholar 

  32. 32.

    Rytomaa, M. and Kinnunen, P.K. Evidence for two distinct acidic phospholipid-binding sites in cytochrome c. J. Biol. Chem. 269 (1994) 1770–1774.

    PubMed  CAS  Google Scholar 

  33. 33.

    Lovell, S.J. and Winzor, D.J. Effects of phosphate on the dissociation and enzymatic stability of rabbit muscle lactate dehydrogenase. Biochemistry 13 (1974) 3527–3531.

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Okeley, N.M. and Gelb, M.H. A designed probe for acidic phospholipids reveals the unique enriched anionic character of the cytosolic face of the mammalian plasma membrane. J. Biol. Chem. 279 (2004) 21833–21840.

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Korzeniewski, B. and Zoladz, J.A. Influence of rapid changes in cytosolic pH on oxidative phosphorylation in skeletal muscle: theoretical studies. Biochem. J. 365 (2002) 249–258.

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Korzeniewski, B. AMP deamination delays muscle acidification during heavy exercise and hypoxia. J. Biol. Chem. 281 (2006) 3057–3066.

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Kraayenhof, R., Sterk, G.J. and Sang, H.W. Probing biomembrane interfacial potential and pH profiles with a new type of float-like fluorophores positioned at varying distance from the membrane surface. Biochemistry 32 (1993) 10057–10066.

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Zhao, H., Tuominen, E.K. and Kinnunen, P.K. Formation of amyloid fibers triggered by phosphatidylserine-containing membranes. Biochemistry 43 (2004) 10302–10307.

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Baba, N. and Sharma, H.M. Histochemistry of lactic dehydrogenase in heart and pectoralis muscles of rat. J. Cell. Biol. 51 (1971) 621–635.

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Kline, E.S., Brandt, R.B., Laux, J.E., Spainhour, S.E., Higgins, E.S., Rogers, K.S., Tinsley, S.B. and Waters, M.G. Localization of L-lactate dehydrogenase in mitochondria. Arch. Biochem. Biophys. 246 (1986) 673–680.

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Brandt, R.B., Laux, J.E., Spainhour, S.E. and Kline, E.S. Lactate dehydrogenase in rat mitochondria. Arch. Biochem. Biophys. 259 (1987) 412–422

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Gladden, LB. Lactate metabolism: a new paradigm for the third millennium. J. Physiol. 558 (2004) 5–30.

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Brooks, G.A., Dubouchaud, H., Brown, M., Sicurello, J.P. and Butz, C.E. Role of mitochondrial lactate dehydrogenase and lactate oxidation in the intracellular lactate shuttle. Proc. Natl. Acad. Sci. USA 96 (1999) 1129–1134.

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Hashimoto, T., Hussien, R. and Brooks, G.A. Colocalization of MCT1, CD147, and LDH in mitochondrial inner membrane of L6 muscle cells: evidence of a mitochondrial lactate oxidation complex. Am. J. Physiol. Endocrinol. Metab. 290 (2006) 1237–1244.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Grzegorz Terlecki.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Terlecki, G., Czapińska, E. & Hotowy, K. Ultracentrifugation studies of the location of the site involved in the interaction of pig heart lactate dehydrogenase with acidic phospholipids at low pH. A comparison with the muscle form of the enzyme. Cell Mol Biol Lett 12, 378–395 (2007). https://doi.org/10.2478/s11658-007-0010-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-007-0010-5

Keywords

  • Lipid-protein interaction
  • Lactate dehydrogenase isoenzymes
  • Acidic phospholipids
  • Cardiolipin
  • Phosphatidylserine