Skip to main content

Engrafting fetal liver cells into multiple tissues of healthy adult mice without the use of immunosuppressants


We have shown the fetal liver cell engraftments into multiple tissues of adult healthy mice, achieved without suppressing the animals’ immune systems. Fetal cells from the livers of male C57Bl/6J Black lineage mice at day 13 to 15 of gestation were injected intravenously into female adult CC57W/MY White mice. The grafting was evaluated by Y-chromosome-specific PCR, cytometric analysis of fluorescently stained donor cells, and histological analysis. All the methods consistently showed the presence of multiple engraftments randomly distributed through the various organs of the recipients. After 60 days, the grafts still constituted 0.1 to 2.75% of the tissues. The grafted cells did not change their appearance in any of the organs except the brain, where they became enlarged. Inflammatory reactions were not detected in any of the histological preparations. The frequency of engraftments was higher in the liver, indicating that similarity between the donor and recipient cells facilitates engraftment. The high inherent plasticity of fetal liver cells underlies their ability to integrate into healthy recipient organs, which can be governed by environmental conditions and connections with neighboring cells rather than by the initial cellular developmental programs. The fact that fetal liver cells can be grafted into multiple tissues of healthy animals indicates that they can be used to replace the natural loss of cells in adult organisms.



ethylenediaminetetraacetic acid


engraftment value


fluorescence-activated cell sorting


fetal calf serum


polymerase chain reaction


testis-specific pseudogene of Y chromosome




  1. 1.

    Bhattacharya, N. Fetal cell/tissue therapy in adult disease: a new horizon in regenerative medicine. Clin. Exp. Obstet. Gynecol. 31 (2004) 167–173.

    PubMed  CAS  Google Scholar 

  2. 2.

    Snyder, B.J. and Olanow, C.W. Stem cell treatment for Parkinson’s disease: an update for 2005. Curr. Opin. Neuro. 18 (2005) 376–385.

    CAS  Article  Google Scholar 

  3. 3.

    Melone, M.A., Jori, F.P. and Peluso, G. Huntington’s disease: new frontiers for molecular and cell therapy. Curr. Drug Targets 6 (2005) 43–56.

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Haider, H.Kh. and Ashraf, M. Bone marrow stem cell transplantation for cardiac repair. J. Physiol. Heart Circ. Physiol. 288 (2005) 2557–2567.

    Article  CAS  Google Scholar 

  5. 5.

    O’Donoghue, K., and Fisk, N.M. Fetal stem cells. Best Pract. Res. Clin. Obstet. Gynaecol. 18 (2004) 853–875.

    PubMed  Article  Google Scholar 

  6. 6.

    Sembeil, R., Sanhadji, K., Vivier, G., Chargui, J. and Touraine, J.L. Prolonged survival of mouse skin allografts after transplantation of fetal liver cells transduced with hIL-10 gene. Transpl. Immunol. 13 (2004) 1–8.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    de Vries-van der Zwan, A., van der Pol, M.A., de Waal, L.P. and Boog, C.J. An alternative conditioning regimen for induction of specific skin graft tolerance across full major histocompatibility complex barriers. Transpl. Immunol. 6 (1998) 147–151.

    PubMed  Article  Google Scholar 

  8. 8.

    Wakabayashi, A., Eishi, Y. and Nakamura, K.J. Development of the immune system in severe combined immunodeficiency mice reconstituted with transferred fetal liver cells. Med. Dent. Sci. 44 (1997a) 21–29.

    CAS  Google Scholar 

  9. 9.

    Taylor, P.A., McElmurry, R.T., Lees, C.J., Harrison, D.E. and Blazar, B.R. Allogenic fetal liver cells have a distinct competitive engraftment advantage over adult bone marrow cells when infused into fetal as compared with adult severe combined immunodeficient recipients. Blood 99 (2002) 1870–1872.

    PubMed  Article  Google Scholar 

  10. 10.

    Sanhadji, K., Touraine, J.L., Aitouche, A., Vicari, A., Chargui, J. and Goillot, E. Fetal liver cell transplantation in various murine models. Bone Marrow Transplant. 9 (1992) 77–82.

    PubMed  Google Scholar 

  11. 11.

    Savitz, S.I., Dinsmore, J., Wu, J., Henderson, G.V., Stieg, P. and Caplan, L.R. Neurotransplantation of fetal porcine cells in patients with basal ganglia infarcts: a preliminary safety and feasibility study. Cerebrovasc. Dis. 21 (2005) 101–107.

    Article  Google Scholar 

  12. 12.

    Wakabayashi, A., Eishi, Y. and Nakamura, K. Regulation of experimental autoimmune orchitis by the presence or absence of testicular antigens during immunological development in SCID mice reconstituted with fetal liver cells. Immunology 92 (1997b) 84–90.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Chargui, J., Moya, M.J., Sanhadji, K., Blanc-Brunat, N. and Touraine, J.L. Anti-NK antibodies injected into recipient mice enhance engraftment and chimerism after allogeneic transplantation of fetal liver stem cells. Thymus 24 (1997) 233–246.

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Yuh, D.D., Gandy, K.L., Hoyt, G., Reitz, B.A. and Robbins, R.C. Tolerance to cardiac allografts induced in utero with fetal liver cells. Circulation 94 (1996) 11304–11307.

    Google Scholar 

  15. 15.

    Schoeberlein, A., Holzgreve, W., Dudler, L., Hahn, S. and Surbek, D.V. Tissue-specific engraftment after in utero transplantation of allogeneic mesenchymal stem cells into sheep fetuses. Am. J. Obstet. Gynecol. 192 (2005) 1044–1052.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Shields, L.E., Lindton, B., Andrews, R.G. and Westgren, M. Fetal hematopoietic stem cell transplantation: a challenge for the twenty-first century. J. Hematotherapy Stem Cell Res. 11 (2002) 617–631.

    Article  Google Scholar 

  17. 17.

    Chang, K.T., Sefc, L., Psenak, O., Vokurka, M. and Necas, E. Early fetal liver readily repopulates B lymphopoiesis in adult bone marrow. Stem Cells 23 (2005) 230–239.

    PubMed  Article  Google Scholar 

  18. 18.

    Nisbet-Brown, E. and Diener, E. T lymphocytes from irradiation chimeras repopulated with 13-day fetal liver cells recognize antigens only in association with self-MHC products. J. Mol. Cell Immunol. 2 (1986) 235–242.

    PubMed  CAS  Google Scholar 

  19. 19.

    Rabinowich, H., Umiel, T. and Globerson, A. T-cell progenitors in the mouse fetal liver. Transplantation 35 (1983) 40–48.

    PubMed  CAS  Article  Google Scholar 

  20. 20.

    Christensen, J.L., Wright, D.E., Wagers, A.J. and Weissman, I.L. Circulation and chemotaxis of fetal hematopoietic stem cells. PLoS Biology 2 (2004) 0368–0377.

    Article  Google Scholar 

  21. 21.

    Dainiak, N. and Ricks, R.C. The evolving role of haematopoietic cell transplantation in radiation injury: potentials and limitations. BJR Suppl. 27 (2005) 169–174.

    PubMed  CAS  Article  Google Scholar 

  22. 22.

    Feng, R.Q., Du, L.Y. and Guo, Z.Q. In vitro cultivation and differentiation of fetal liver stem cells from mice. Cell Res. 15 (2005) 401–405.

    PubMed  Article  Google Scholar 

  23. 23.

    Morrison, S.J., Uchida, N. and Weissman, I.L. The biology of hematopoietic stem cells. Annu. Rev. Cell Dev. Biol. 11 (1995) 35–71.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Drukker, M., Katz, G., Urbach, A. Characterization of the expression of MHC proteins in human embryonic stem cells. Proc. Natl. Acad. Sci. 99 (2002) 9864–9869.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Tatebe, M., Nakamura, R., Kagami, H., Okada, K. and Ueda, M. Differentiation of transplanted mesenchymal stem cells in a large osteochondral defect in rabbit. Cytotherapy 7 (2005) 520–530.

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Chu, K., Park, K.I. and Lee, S.T. Combined treatment of vascular endothelial growth factor and human neural stem cells in experimental focal cerebral ischemia. Neurosci. Res. 53 (2005) 384–390.

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Seglen, P.O. Preparation of isolated rat liver cells. Methods Cell Biol. 13 (1976) 29–83.

    PubMed  CAS  Article  Google Scholar 

  28. 28.

    Zheng, Y.W., Ohkohchi, N. and Taniguchi, H. Quantitative evaluation of long-term liver repopulation and the reconstitution of bile ductules after hepatocellular transplantation. World J. Gastroenterol. 39 (2005) 6176–6181.

    Google Scholar 

  29. 29.

    Wang, L.J., Chen, M.Y. and George, D. Engraftment assessment in human and mouse liver tissue after sex-mismatched liver cell transplantation by real-time quantitative PCR for Y-chromosome sequences. Liver Transpl. 9 (2002) 822–828.

    Article  Google Scholar 

  30. 30.

    Lapidot, T. and Petit, I. Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Exp. Hematol. 30 (2002) 973–981.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Ludmilla A. Morozova-Roche.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Darinskas, A., Gasparaviciute, R., Malisauskas, M. et al. Engrafting fetal liver cells into multiple tissues of healthy adult mice without the use of immunosuppressants. Cell Mol Biol Lett 12, 422–434 (2007).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Fetal cells
  • Transplantation
  • Engraftment
  • Immune suppression