Skip to main content
  • Short Communication
  • Published:

The CFTR-derived peptides as a model of sequence-specific protein aggregation

Abstract

Protein aggregation is a hallmark of a growing group of pathologies known as conformational diseases. Although many native or mutated proteins are able to form aggregates, the exact amino acid sequences involved in the process of aggregation are known only in a few cases. Hence, there is a need for different model systems to expand our knowledge in this area. The so-called ag region was previously found to cause the aggregation of the C-terminal fragment of the cystic fibrosis transmembrane conductance regulator (CFTR). To investigate whether this specific amino acid sequence is able to induce protein aggregation irrespective of the amino acid context, we altered its position within the CFTR-derived C-terminal peptide and analyzed the localization of such modified peptides in transfected mammalian cells. Insertion of the ag region into a different amino acid background affected not only the overall level of intracellular protein aggregation, but also the morphology and subcellular localization of aggregates, suggesting that sequences other than the ag region can substantially influence the peptide’s behavior. Also, the introduction of a short dipeptide (His-Arg) motif, a crucial component of the ag region, into different locations within the C-terminus of CFTR lead to changes in the aggregation pattern that were less striking, although still statistically significant. Thus, our results indicate that even subtle alterations within the aggregating peptide can affect many different aspects of the aggregation process.

Abbreviations

CFTR:

cystic fibrosis transmembrane conductance regulator

GFP:

green fluorescence protein

HA:

hemagglutinin antigen

NBF2:

nucleotide-binding fold 2

References

  1. Carrell, R.W. and Lomas, D.A. Conformational disease. Lancet 350 (1997) 134–138.

    Article  PubMed  CAS  Google Scholar 

  2. Kisilevsky, R. and Fraser, P.E. A beta amyloidogenesis: unique, or variation on a systemic theme? Crit. Rev. Biochem. Mol. Biol. 32 (1997) 361–404.

    PubMed  CAS  Google Scholar 

  3. Kopito, R.R. Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol. 10 (2000) 524–530.

    Article  PubMed  CAS  Google Scholar 

  4. Donaldson, K.M., Li, W., Ching, K.A., Batalov, S., Tsai, C.C. and Joazeiro C.A. Ubiquitin-mediated sequestration of normal cellular proteins into polyglutamine aggregates. Proc. Natl. Acad. Sci. USA 100 (2003) 8892–8897.

    Article  PubMed  CAS  Google Scholar 

  5. Kazantsev, A., Preisinger, E., Dranovsky, A., Goldgaber, D. and Housman, D. Insoluble detergent-resistant aggregates form between pathological and nonpathological lengths of polyglutamine in mammalian cells. Proc. Natl. Acad. Sci. USA 96 (1999) 11404–11409.

    Article  PubMed  CAS  Google Scholar 

  6. Preisinger, E., Jordan, B.M., Kazantsev, A. and Housman, D. Evidence for a recruitment and sequestration mechanism in Huntington’s disease. Philos. Trans. R. Soc. Lond B Biol. Sci. 354 (1999) 1029–1034.

    Article  PubMed  CAS  Google Scholar 

  7. Schaffar, G., Breuer, P., Boteva, R., Behrends, C., Tzvetkov, N., Strippel, N., Sakahira, H., Siegers, K., Hayer-Hartl, M. and Hartl, F.U. Cellular toxicity of polyglutamine expansion proteins: mechanism of transcription factor deactivation. Mol. Cell. 15 (2004) 95–105.

    Article  PubMed  CAS  Google Scholar 

  8. Suhr, S.T., Senut, M.C., Whitelegge, J.P., Faull, K.F., Cuizon, D.B. and Gage, F.H. Identities of sequestered proteins in aggregates from cells with induced polyglutamine expression. J. Cell Biol. 153 (2001) 283–294.

    Article  PubMed  CAS  Google Scholar 

  9. Stenoien, D.L., Cummings, C.J., Adams, H.P., Mancini, M.G., Patel, K., DeMartino, G.N., Marcelli, M., Weigel, N.L. and Mancini, M.A. Polyglutamine-expanded androgen receptors form aggregates that sequester heat shock proteins, proteasome components and SRC-1, and are suppressed by the HDJ-2 chaperone. Hum. Mol. Genet. 8 (1999) 731–741.

    Article  PubMed  CAS  Google Scholar 

  10. Chai, Y., Wu, L., Griffin, J.D. and Paulson, H.L. The role of protein composition in specifying nuclear inclusion formation in polyglutamine disease. J. Biol. Chem. 276 (2001) 44889–44897.

    Article  PubMed  CAS  Google Scholar 

  11. Nozaki, K., Onodera, O., Takano, H. and Tsuji, S. Amino acid sequences flanking polyglutamine stretches influence their potential for aggregate formation. Neuroreport 12 (2001) 3357–3364.

    Article  PubMed  CAS  Google Scholar 

  12. DiFiglia, M. Huntingtin fragments that aggregate go their separate ways. Mol. Cell. 10 (2002) 224–225.

    Article  PubMed  CAS  Google Scholar 

  13. Ziegler, J., Viehrig, C., Geimer, S., Rosch, P. and Schwarzinger, S. Putative aggregation initiation sites in prion protein. FEBS Lett. 580 (2006) 2033–2040.

    Article  PubMed  CAS  Google Scholar 

  14. Gautreau, A., Fievet, B.T., Brault, E., Antony, C., Houdusse, A., Louvard, D. and Arpin, M. Isolation and characterization of an aggresome determinant in the NF2 tumor suppressor. J. Biol. Chem. 278 (2003) 6235–6242.

    Article  PubMed  CAS  Google Scholar 

  15. Link, C.D., Fonte, V., Hiester, B., Yerg, J., Ferguson, J., Csontos, S., Silverman, M.A. and Stein, G.H. Conversion of green fluorescent protein into a toxic, aggregation-prone protein by C-terminal addition of a short peptide. J. Biol. Chem. 281 (2006) 1808–1816.

    Article  PubMed  CAS  Google Scholar 

  16. Giasson, B.I., Murray, I.V., Trojanowski, J.Q. and Lee, V.M. A hydrophobic stretch of 12 amino acid residues in the middle of alpha-synuclein isessential for filament assembly. J. Biol. Chem. 276 (2001) 2380–2386.

    Article  PubMed  CAS  Google Scholar 

  17. Johnston, J.A., Ward, C.L. and Kopito, R.R. Aggresomes: a cellular response to misfolded proteins. J. Cell Biol. 143 (1998) 1883–1898.

    Article  PubMed  CAS  Google Scholar 

  18. Bence, N.F., Sampat, R.M. and Kopito, R.R. Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292 (2001) 1552–1555.

    Article  PubMed  CAS  Google Scholar 

  19. Rajan, R.S., Illing, M.E., Bence, N.F. and Kopito, R.R. Specificity in intracellular protein aggregation and inclusion body formation. Proc. Natl. Acad. Sci. USA 98 (2001) 13060–13065.

    Article  PubMed  CAS  Google Scholar 

  20. Corboy, M.J., Thomas, P.J. and Wigley, W.C. CFTR degradation and aggregation. Methods Mol. Med. 70 (2002) 277–294.

    PubMed  CAS  Google Scholar 

  21. Mukai, H., Isagawa, T., Goyama, E., Tanaka, S., Bence, N.F., Tamura, A., Ono, Y. and Kopito, R.R. Formation of morphologically similar globular aggregates from diverse aggregation-prone proteins in mammalian cells. Proc. Natl. Acad. Sci. USA 102 (2005) 10887–10892.

    Article  PubMed  CAS  Google Scholar 

  22. Milewski, M.I., Mickle, J.E., Forrest, J.K., Stanton, B.A. and Cutting, G.R. Aggregation of misfolded proteins can be a selective process dependent upon peptide composition. J. Biol. Chem. 277 (2002) 34462–34470.

    Article  PubMed  CAS  Google Scholar 

  23. Milewski, M.I., Mickle, J.E., Forrest, J.K., Stafford, D.M., Moyer, B.D., Cheng, J., Guggino, W.B., Stanton, B.A. and Cutting, G.R. A PDZ-binding motif is essential but not sufficient to localize the C terminus of CFTR to theapical membrane. J. Cell Sci. 114 (2001) 719–726.

    PubMed  CAS  Google Scholar 

  24. Zeitlin, P.L., Lu, L., Rhim, J., Cutting, G., Stetten, G., Kieffer, K.A., Craig, R. and Guggino, W.B. A cystic fibrosis bronchial epithelial cell line: immortalization by adeno-12-SV40 infection. Am. J. Respir. Cell Mol. Biol. 4 (1991) 313–319.

    PubMed  CAS  Google Scholar 

  25. Jiang, X., Hill, W.G., Pilewski, J.M. and Weisz, O.A. Glycosylation differences between a cystic fibrosis and rescued airway cell line are not CFTR dependent. Am. J. Physiol. 273 (1997) L913–L920.

    PubMed  CAS  Google Scholar 

  26. Eudes, R., Lehn, P., Ferec, C., Mornon, J.P. and Callebaut, I. Nucleotide binding domains of human CFTR: a structural classification of critical residues and disease-causing mutations. Cell Mol. Life Sci. 62 (2005) 2112–2123.

    Article  PubMed  CAS  Google Scholar 

  27. Moyer, B.D., Duhaime, M., Shaw, C., Denton, J., Reynolds, D., Karlson, K.H., Pfeiffer, J., Wang, S., Mickle, J.E., Milewski, M., Cutting, G.R., Guggino, W.B., Li, M. and Stanton, B.A. The PDZ-interacting domain of cystic fibrosis transmembrane conductance regulator is required for functional expression in the apical plasma membrane. J. Biol. Chem. 275 (2000) 27069–27074.

    PubMed  CAS  Google Scholar 

  28. Thomas, C.L. and Maule, A.J. Limitations on the use of fused green fluorescent protein to investigate structure-function relationships for the cauliflower mosaic virus movement protein. J. Gen. Virol. 81 (2000) 1851–1855.

    PubMed  CAS  Google Scholar 

  29. Peters, M.F., Nucifora, F.C., Jr., Kushi, J., Seaman, H.C., Cooper, J.K., Herring, W.J., Dawson, V.L., Dawson, T.M. and Ross, C.A. Nuclear targeting of mutant Huntingtin increases toxicity. Mol. Cell Neurosci. 14 (1999) 121–128.

    Article  PubMed  CAS  Google Scholar 

  30. Gutekunst, C.A., Li, S.H., Yi, H., Mulroy, J.S., Kuemmerle, S., Jones, R., Rye, D., Ferrante, R.J., Hersch, S.M. and Li, X.J. Nuclear and neuropil aggregates in Huntington’s disease: relationship to neuropathology. J. Neurosci. 19 (1999) 2522–2534.

    PubMed  CAS  Google Scholar 

  31. Yang, W., Dunlap, J.R., Andrews, R.B. and Wetzel, R. Aggregated polyglutamine peptides delivered to nuclei are toxic to mammalian cells. Hum. Mol. Genet. 11 (2002) 2905–2917.

    Article  PubMed  CAS  Google Scholar 

  32. Schilling, G., Savonenko, A.V., Klevytska, A., Morton, J.L., Tucker, S.M., Poirier, M., Gale, A., Chan, N., Gonzales, V., Slunt, H.H., Coonfield, M.L., Jenkins, N.A., Copeland, N.G., Ross, C.A. and Borchelt, D.R. Nuclear-targeting of mutant huntingtin fragments produces Huntington’s disease-like phenotypes in transgenic mice. Hum. Mol. Genet. 13 (2004) 1599–1610.

    Article  PubMed  CAS  Google Scholar 

  33. Duennwald, M.L., Jagadish, S., Muchowski, P.J. and Lindquist, S. Flanking sequences profoundly alter polyglutamine toxicity in yeast. Proc. Natl. Acad. Sci. USA 103 (2006) 11045–11050.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Bąk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bąk, D., Cutting, G.R. & Milewski, M. The CFTR-derived peptides as a model of sequence-specific protein aggregation. Cell Mol Biol Lett 12, 435–447 (2007). https://doi.org/10.2478/s11658-007-0014-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-007-0014-1

Key Words