Skip to main content
  • Short Communication
  • Published:

The effect of growth medium on the antioxidant defense of Saccharomyces cerevisiae

Abstract

We compared the oxidation of dihydrorhodamine 123, glutathione contents and activities of superoxide dismutase (SOD) and catalase for three wild-type strains of Saccharomyces cerevisiae grown on media with different carbon sources. The rate of oxidation of dihydrorhodamine 123 was much higher in respiring cells grown on ethanol or glycerol media than in fermenting cells grown on glucose medium. The total SOD activity was highest on glycerol medium and lowest on ethanol medium, while the catalase activity was highest on glycerol medium. The sequence of glutathione content values was: glucose > ethanol > glycerol.

Abbreviations

DTNB:

5,5′-dithiobis-(2-nitrobenzoic acid)

H2R 123:

dihydrorhodamine 123

MES:

2-morpholinoethanesulfonic acid

ROS:

reactive oxygen species

SOD:

superoxide dismutase

YPD medium:

1% yeast extract, 1% Bacto-peptone, 2% glucose, YPG medium, 1% yeast extract, 1% Bacto-peptone,2% glycerol

YPE medium:

1% yeast extract, 1% Bacto-peptone, 3% ethanol

References

  1. Hortner, H., Ammerer, G., Hartter, E., Hamilton, B., Rytka, J., Bilinski, T. and Ruis, H. Regulation of synthesis of catalases and iso-1-cytochrome c in Saccharomyces cerevisiae by glucose, oxygen and heme. Eur. J. Biochem. 128 (1982) 179–184.

    Article  PubMed  CAS  Google Scholar 

  2. Sigler, K., Chaloupka, J., Brozmanova, J., Stadler, N. and Hofer, M. Oxidative stress in microorganisms—I. Microbial vs. higher cells—damage and defenses in relation to cell aging and death. Folia Microbiol. (Praha) 44 (1999) 587–624.

    CAS  Google Scholar 

  3. Balaban, R.S., Nemoto, S. and Finkel, T. Mitochondria, oxidants, and aging. Cell 120 (2005) 483–495.

    Article  PubMed  CAS  Google Scholar 

  4. Fiechter, A. and Gmunder, F.K. Metabolic control of glucose degradation in yeast and tumor cells. Adv. Biochem. Eng. Biotechnol. 39 (1989) 1–28.

    PubMed  CAS  Google Scholar 

  5. Shuster, J.R. Regulated transcriptional systems for the production of proteins in yeast: regulation by carbon source. Biotechnology 13 (1989) 83–108.

    PubMed  CAS  Google Scholar 

  6. Costa, V., Amorim, M.A., Reis, E., Quintanilha, A. and Moradas-Ferreira, P. Mitochondrial superoxide dismutase is essential for ethanol tolerance of Saccharomyces cerevisiae in the post-diauxic phase. Microbiology 143 (1997) 1649–1656.

    Article  PubMed  CAS  Google Scholar 

  7. Schuller, H.J. Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae. Curr. Genet. 43 (2003) 139–160.

    PubMed  Google Scholar 

  8. Barnett, J.A. and Entian, K.D. A history of research on yeasts 9: regulation of sugar metabolism. Yeast 22 (2005) 835–894.

    Article  PubMed  CAS  Google Scholar 

  9. Penninckx, M.J. An overview on glutathione in Saccharomyces versus nonconventional yeasts. FEMS Yeast Res. 2 (2002) 295–305.

    PubMed  CAS  Google Scholar 

  10. Pocsi, I., Prade, R.A. and Penninckx, M.J. Glutathione, altruistic metabolite in fungi. Adv. Microb. Physiol. 49 (2004) 1–76.

    PubMed  CAS  Google Scholar 

  11. Lee, J.C., Straffon, M.J., Jang, T.Y., Higgins, V.J., Grant, C.M. and Dawes, I.W. The essential and ancillary role of glutathione in Saccharomyces cerevisiae analysed using a grande gsh1 disruptant strain. FEMS Yeast Res. 1 (2001) 57–65.

    PubMed  CAS  Google Scholar 

  12. Avery, A.M. and Avery, S.V. Saccharomyces cerevisiae expresses three phospholipid hydroperoxide glutathione peroxidases. J. Biol. Chem. 276 (2001) 33730–33735.

    Article  PubMed  CAS  Google Scholar 

  13. Maris, A.F., Assumpcao, A.L., Bonatto, D., Brendel, M. and Henriques, J.A. Diauxic shift-induced stress resistance against hydroperoxides in Saccharomyces cerevisiae is not an adaptive stress response and does not depend on functional mitochondria. Curr. Genet. 39 (2001) 137–149.

    Article  PubMed  CAS  Google Scholar 

  14. Lushchak, V., Semchyshyn, H., Mandryk, S. and Lushchak, O. Possible role of superoxide dismutases in the yeast Saccharomyces cerevisiae under respiratory conditions. Arch. Biochem. Biophys. 441 (2005) 35–40.

    Article  PubMed  CAS  Google Scholar 

  15. Grzelak, A., Soszynski, M. and Bartosz, G. Inactivation of antioxidant enzymes by peroxynitrite. Scand. J. Clin. Lab. Invest. 60 (2000) 253–258.

    Article  PubMed  CAS  Google Scholar 

  16. Misra, H.P. and Fridovich, I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 247 (1972) 3170–3175.

    PubMed  CAS  Google Scholar 

  17. Akerboom, T.P. and Sies, H. Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples. Methods Enzymol. 77 (1981) 373–382.

    Article  PubMed  CAS  Google Scholar 

  18. Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193 (1951) 265–275.

    PubMed  CAS  Google Scholar 

  19. Ronne, H. Glucose repression in fungi. Trends Genet. 11 (1995) 12–17.

    Article  PubMed  CAS  Google Scholar 

  20. Bartosz, G. Limitations and pitfalls of the use of spectroscopic probes for the detection of reactive oxygen species. Clin. Chim. Acta 368 (2006) 53–76.

    Article  PubMed  CAS  Google Scholar 

  21. Wrona, M., Patel, K. and Wardman, P. Reactivity of 2′,7′-dichlorodihydrofluorescein and dihydrorhodamine 123 and their oxidized forms toward carbonate, nitrogen dioxide, and hydroxyl radicals. Free Radic. Biol. Med. 38 (2005) 262–270.

    Article  PubMed  CAS  Google Scholar 

  22. Jakubowski, W. and Bartosz, G. 2,7-dichlorofluorescin oxidation and reactive oxygen species: what does it measure? Cell Biol. Int. 24 (2000) 757–760.

    Article  PubMed  CAS  Google Scholar 

  23. Bartosz, G. Use of spectroscopic probes for detection of reactive oxygen species. Clin. Chim. Acta 368 (2006) 53–76.

    Article  PubMed  CAS  Google Scholar 

  24. Bito, A., Haider, M., Hadler, I. and Breitenbach, M. Identification and phenotypic analysis of two glyoxalase II encoding genes from Saccharomyces cerevisiae, GLO2 and GLO4, and intracellular localization of the corresponding proteins. J. Biol. Chem. 272 (1997) 21509–21519.

    Article  PubMed  CAS  Google Scholar 

  25. Schafer, F.Q. and Buettner, G.R. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic. Biol. Med. 30 (2001) 1191–1212.

    Article  PubMed  CAS  Google Scholar 

  26. Drakulic, T., Temple, M.D., Guido, R., Jarolim, S., Breitenbach, M., Attfield, P.V. and Dawes, I.W. nvolvement of oxidative stress response genes in redox homeostasis, the level of reactive oxygen species, and ageing in Saccharomyces cerevisiae. FEMS Yeast Res. 5 (2005) 1215–1228.

    Article  PubMed  CAS  Google Scholar 

  27. Grant, C.M., Perrone, G. and Dawes, I.W. Glutathione and catalase provide overlapping defenses for protection against hydrogen peroxide in the yeast Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 253 (1998) 893–898.

    Article  PubMed  CAS  Google Scholar 

  28. Xu, B.E., Skowronek, K.R. and Kurjan, J. The N terminus of Saccharomyces cerevisiae Sst2p plays an RGS-domain-independent, Mpt5p-dependent role in recovery from pheromone arrest. Genetics 159 (2001) 1559–1571.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa Macierzyńska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macierzyńska, E., Grzelak, A. & Bartosz, G. The effect of growth medium on the antioxidant defense of Saccharomyces cerevisiae . Cell Mol Biol Lett 12, 448–456 (2007). https://doi.org/10.2478/s11658-007-0017-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-007-0017-y

Key words