Skip to main content

Stilbene derivatives inhibit the activity of the inner mitochondrial membrane chloride channels


Ion channels selective for chloride ions are present in all biological membranes, where they regulate the cell volume or membrane potential. Various chloride channels from mitochondrial membranes have been described in recent years. The aim of our study was to characterize the effect of stilbene derivatives on single-chloride channel activity in the inner mitochondrial membrane. The measurements were performed after the reconstitution into a planar lipid bilayer of the inner mitochondrial membranes from rat skeletal muscle (SMM), rat brain (BM) and heart (HM) mitochondria. After incorporation in a symmetric 450/450 mM KCl solution (cis/trans), the chloride channels were recorded with a mean conductance of 155 ± 5 pS (rat skeletal muscle) and 120 ± 16 pS (rat brain). The conductances of the chloride channels from the rat heart mitochondria in 250/50 mM KCl (cis/trans) gradient solutions were within the 70–130 pS range. The chloride channels were inhibited by these two stilbene derivatives: 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS) and 4-acetamido-4′-isothiocyanostilbene-2,2′-disulfonic acid (SITS). The skeletal muscle mitochondrial chloride channel was blocked after the addition of 1 mM DIDS or SITS, whereas the brain mitochondrial channel was blocked by 300 μM DIDS or SITS. The chloride channel from the rat heart mitochondria was inhibited by 50–100 μM DIDS. The inhibitory effect of DIDS was irreversible. Our results confirm the presence of chloride channels sensitive to stilbene derivatives in the inner mitochondrial membrane from rat skeletal muscle, brain and heart cells.



black lipid membrane


brain mitochondria


chloride intracellular channels


4,4′-diisothiocyanostilbene-2,2′-disulfonic acid


6,6′-dinitro-3,3′-dithiodibenzoic acid


heart mitochondria


4-acetamido-4-isothiocyanostilbene-2,2′-disulfonic acid


mitochondrial inner membrane anion channel


4-acetamido-4-isothiocyanostilbene-2,2′-disulfonic acid


skeletal muscle mitochondria


submitochondrial particles


tumor necrosis factor α


uncoupling proteins


  1. 1.

    Szewczyk, A., Skalska, J., Glab, M., Kulawiak, B., Malinska, D., Koszela-Piotrowska, I. and Kunz, W.S. Mitochondrial potassium channels: From pharmacology to function. Biochim. Biophys. Acta 1757 (2006) 715–720.

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Wang, X., Takahashi, N., Uramoto, H. and Okada, Y. Chloride channel inhibition prevents ROS-dependent apoptosis induced by ischemiareperfusion in mouse cardiomyocytes. Cell. Physiol. Biochem. 16 (2005) 147–154.

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Beavis, A.D. and Garlid, K.D. The mitochondrial inner membrane anion channel. Regulation by divalent cations and protons. J. Biol. Chem. 262 (1987) 15085–15093.

    PubMed  CAS  Google Scholar 

  4. 4.

    Beavis, A.D. Properties of the inner membrane anion channel in intact mitochondria. J. Bioenerg. Biomembr. 24 (1992) 77–90.

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Schönfeld, P., Sayeed, I., Bohnensack, R. and Siemen, D. Fatty acids induce chloride permeation in rat liver mitochondria by activation of the inner membrane anion channel (IMAC). J. Bioenerg. Biomembr. 36 (2004) 241–248.

    PubMed  Article  Google Scholar 

  6. 6.

    Sorgato, M.C., Keller, B.U. and Stuhmer, W. Patch-clamping of the inner mitochondrial membrane reveals a voltage-dependent ion channel. Nature 330 (1987) 498–500.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Sorgato, M.C., Moran, O., De Pinto, V., Keller, B.U. and Stuehmer, W. Further investigation on the high-conductance ion channel of the inner membrane of mitochondria. J. Bioenerg. Biomembr. 21 (1989) 485–496.

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Moran, O., Sandri, G., Panfili, E., Stuhmer, W. and Sorgato, M.C. Electrophysiological characterization of contact sites in brain mitochondria. J. Biol. Chem. 265 (1990) 908–913.

    PubMed  CAS  Google Scholar 

  9. 9.

    Klitsch, T. and Siemen, D. Inner mitochondrial membrane anion channel is present in brown adipocytes but is not identical with the uncoupling protein. J. Membr. Biol. 122 (1991) 69–75.

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Borecky, J., Jezek, P. and Siemen, D. 108-pS channel in brown fat mitochondria might be identical to the inner membrane anion channel. J. Biol. Chem. 272 (1997) 19282–19289.

    PubMed  CAS  Google Scholar 

  11. 11.

    Hayman, K.A., Spurway, T.D. and Ashley, R.H. Single anion channels reconstituted from cardiac mitoplasts. J. Membrane Biol. 136 (1993) 181–190.

    Article  CAS  Google Scholar 

  12. 12.

    Fernandez-Salas, E., Sagar, M., Cheng, C., Yuspa, S.H. and Weinberg, W.C. p53 and tumor necrosis factor alpha regulate the expression of a mitochondrial chloride channel protein. J. Biol. Chem. 274 (1999) 36488–36497.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Landry, D., Sullivan, S., Nicolaides, M., Redhead, C., Edelman, A., Field, M., al-Awqati, Q. and Edwards, J. Molecular cloning and characterization of p64, a chloride channel protein from kidney microsomes. J. Biol. Chem. 268 (1993) 14948–14955.

    PubMed  CAS  Google Scholar 

  14. 14.

    Tonini, R., Ferroni, A., Valenzuela, S.M., Warton, K., Campbell, T.J., Breit, S.N. and Mazzanti, M. Functional characterization of the NCC27 nuclear protein in stable transfected CHO-K1 cells. FASEB J. 14 (2000) 1171–1178.

    PubMed  CAS  Google Scholar 

  15. 15.

    Dulhunty, A.F., Pouliquin, P., Coggan, M., Gage, P.W. and Board, P.G. A recently identified member of the glutathione transferase structural family modifies cardiac RyR2 substate activity, coupled gating and activation by Ca2+ and ATP. Biochem. J. 390 (2005) 333–343.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Qian, Z., Okuhara, D., Abe, M.K. and Rosner, M.R. Molecular cloning and characterization of a mitogen-activated protein kinase-associated intracellular chloride channel. J. Biol. Chem. 274 (1999) 1621–1627.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Berryman, M., Bruno, J., Price, J. and Edwards, J.C. CLIC-5A functions as a chloride channel in vitro and associates with the cortical actin cytoskeleton in vitro and in vivo. J. Biol. Chem. 279 (2004) 34794–34801.

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Friedli, M., Guipponi, M., Bertrand, S., Bertrand, D., Neerman-Arbez, M., Scott, H.S., Antonarakis, S.E. and Reymond, A. Identification of a novel member of the CLIC family, CLIC6, mapping to 21q22.12. Gene 320 (2003) 31–40.

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Mizukawa, Y., Nishizawa, T., Nagao, T., Kitamura, K. and Urushidani, T. Cellular distribution of parchorin, a chloride intracellular channel-related protein, in various tissues. Am. J. Physiol. Cell Physiol. 282 (2002) C786–795.

    PubMed  CAS  Google Scholar 

  20. 20.

    Suh, K.S., Mutoh, M., Gerdes, M. and Yuspa, S.H. CLIC4, an intracellular chloride channel protein, is a novel molecular target for cancer therapy. J. Investig. Dermatol. Symp. Proc. 10 (2005) 105–109.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Fernandez-Salas, E., Suh, K.S., Speransky, V.V., Bowers, W.L., Levy, J.M., Adams, T., Pathak, K.R., Edwards, L.E., Hayes, D.D., Cheng, C., Steven, A.C., Weinberg, W.C. and Yuspa, S.H. mtCLIC/CLIC4, an organellular chloride channel protein, is increased by DNA damage and participates in the apoptotic response to p53. Mol. Cell Biol. 22 (2002) 3610–3620.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Suh, K.S., Mutoh, M., Nagashima, K., Fernandez-Salas, E., Edwards, L.E., Hayes, D.D., Crutchley, J.M., Marin, K.G., Dumont, R.A., Levy, J.M., Cheng, C., Garfield, S. and Yuspa, S.H. The organellular chloride channel protein CLIC4/mtCLIC translocates to the nucleus in response to cellular stress and accelerates apoptosis. J. Biol. Chem. 279 (2004) 4632–4641.

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Singh, H. and Ashley, R.H. CLIC4 (p64H1) and its putative transmembrane domain form poorly selective, redox-regulated ion channels. Mol. Membr. Biol. 24 (2007) 41–52.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Wiśniewski, E., Kunz, W.S. and Gellerich, F.N. Phosphate affects the distribution of flux control among the enzymes of oxidative phosphorylation in rat skeletal muscle mitochondria. J. Biol. Chem. 268 (1993) 9343–9346.

    PubMed  Google Scholar 

  25. 25.

    Dębska, G., Kicińska, A., Skalska, J., Szewczyk, A., May, R., Elger, C.E. and Kunz, W.S. Opening of potassium channels modulates mitochondrial function in rat skeletal muscle. Biochim. Biophys. Acta 1556 (2002) 97–105.

    PubMed  Article  Google Scholar 

  26. 26.

    Kudin, A, Bimpong-Buta, N.Y., Vielhaber, S., Elger, C.E. and Kunz, W.S. Characterization of superoxide-producing sites in isolated brain mitochondria. J. Biol. Chem. 279 (2004) 4127–4135.

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Cino, M. and Del Maestro, R.F. Generation of hydrogen peroxide by brain mitochondria: the effect of reoxygenation following postdecapitative ischemia. Arch. Biochem. Biophys. 269 (1989) 623–638.

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Holmuhamedov, E.L., Wang, L. and Terzic, A. ATP-sensitive K+ channel openers prevent Ca2+ overload in rat cardiac mitochondria. J. Physiol. 519 (1999) 347–360.

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Malekova, L., Kominkova, A., Ferko, M., Stefanik, P., Krizanova, O., Ziegelhöffer, A., Szewczyk, A. and Ondrias, K. Bongkrekic acid and atractyloside inhibits chloride channels from mitochondrial membranes of rat heart. Biochim. Biophys. Acta 1767 (2007) 31–44.

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Bednarczyk, P., Kicińska, A., Kominkova, V., Ondrias, K., Dołowy K. and Szewczyk, A. Quinine inhibits mitochondrial ATP-regulated potassium channel from bovine heart. J. Membr. Biol. 199 (2004) 63–72.

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Bednarczyk, P., Dołowy, K. and Szewczyk, A. Matrix Mg2+ regulates mitochondrial ATP-dependent potassium channel from heart. FEBS Lett. 579 (2005) 1625–1632.

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Kulawiak, B. and Bednarczyk, P. Reconstitution of brain mitochondria inner membrane into planar lipid bilayer Acta Neurobiol. Exp. (Wars). 65 (2005) 271–276.

    Google Scholar 

  33. 33.

    Hordejuk, R., Szewczyk, A. and Dołowy K. The heterogeneity of ion channels in chromaffin granule membranes. Cell. Mol. Biol. Lett. 11 (2006) 312–325.

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Cabantchik, Z.I. and Greger, R. Chemical probes for anion transporters of mammalian cell membranes. Am. J. Physiol. 262 (1992) 803–827.

    Google Scholar 

  35. 35.

    Jentsch, T.J., Stein, V., Weinreich, F. and Zdebik, A.A. Molecular structure and physiological function of chloride channels. Physiol. Rev. 82 (2002) 503–568.

    PubMed  CAS  Google Scholar 

  36. 36.

    Beavis, A.D. and Davatol-Hag, H. The mitochondrial inner membrane anion channel is inhibited by DIDS. J. Bioenerg. Biomembr. 28 (1996) 207–214.

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Huang, S.G. and Klingenberg, M. Chloride channel properties of the uncoupling protein from brown adipose tissue mitochondria: a patch-clamp study. Biochemistry 35 (1996) 16806–16814.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Izabela Koszela-Piotrowska.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Koszela-Piotrowska, I., Choma, K., Bednarczyk, P. et al. Stilbene derivatives inhibit the activity of the inner mitochondrial membrane chloride channels. Cell Mol Biol Lett 12, 493–508 (2007).

Download citation


  • Mitochondria
  • Chloride channel
  • Stilbene derivatives
  • Black lipid membrane