Skip to main content
  • Published:

Procaspase-9 is attached to the mitochondrial outer membrane in the early stages of apoptosis

Abstract

Procaspase-9 is the zymogen form of one of the apoptosis initiators, caspase-9. Its cellular location may differ depending on the cell type; it is found throughout the cytosol, although some of it may be associated with the mitochondria. Procaspase-9 relocates from the cytosol to the mitochondria shortly after the triggering of apoptosis in rat hepatocytes. We investigated whether the mitochondrial protein import machineries import procaspase-9. The combined results of protein import analyses, mitochondrial fractionation and protease treatments of intact and swollen mitochondria imply that procaspase-9 attaches to the outer surface of the mitochondrial outer membrane.

Abbreviations

DHFR:

dihidrofolate-reductase

MPP:

mitochondrial processing peptidase

OXA:

oxidase assembly complex

PK:

proteinase K

PMSF:

phenylmethyl sulfonyl fluoride

pSu9:

targeting sequence of subunit 9 of F0F1-ATPase

SAM:

sorting and assembly machinery

SDS-PAGE:

sodium dodecyl sulfate-polyacrylamide gel electrophoresis

TIM:

translocase of the inner membrane

TOB:

topogenesis of the outer membrane

TOM:

translocase of the outer membrane

Try:

trypsin

References

  1. Kerr, J.F.R, Wyllie, H. and Currie, A.R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26 (1972) 239–257.

    PubMed  CAS  Google Scholar 

  2. Cohen, G.M. Caspases: the executioners of apoptosis. Biochem. J. 326 (1997) 1–16.

    PubMed  CAS  Google Scholar 

  3. Salvesen, G.S. and Dixit, V.M. Caspases: intracellular signaling by proteolysis. Cell 91 (1997) 443–446.

    Article  PubMed  CAS  Google Scholar 

  4. Slee, E.A., Harte, M.T., Kluck, R.M., Wolf, B.B., Casiano, C.A., Newmeyer, D.D., Wang, H.G., Reed, J.C., Nicholson, D.W., Alnemri, E.S., Green, D.R. and Martin, S.J. Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2,-3,-6,-7,-8, and-10 in a caspase-9-dependent manner. J. Cell Biol. 144 (1999) 281–292.

    Article  PubMed  CAS  Google Scholar 

  5. Robertson, J.D., Enoksson, M., Suomela, M., Zhivotovsky, B. and Orrenius, S. Caspase-2 acts upstream of mitochondria to promote cytochrome c release during etoposide-induced apoptosis. J. Biol. Chem. 277 (2002) 29803–29809.

    Article  PubMed  CAS  Google Scholar 

  6. Morishima, N., Nakanishi, K., Takenouchi, H., Shibata, T. and Yasuhiko, Y. An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12. J. Biol. Chem. 277 (2002) 34287–34294.

    Article  PubMed  CAS  Google Scholar 

  7. Luo, X., Budihardjo, I., Zou, H., Slaughter, C. and Wang, X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94 (1998) 481–490.

    Article  PubMed  CAS  Google Scholar 

  8. Li, H., Zhu, H., Xu, C. and Yuan, J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94 (1998) 491–501.

    Article  PubMed  CAS  Google Scholar 

  9. Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S.M., Ahmad, M., Alnemri, E.S. and Wang, X. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91 (1997) 479–489.

    Article  PubMed  CAS  Google Scholar 

  10. Cardone, M.H., Roy, N., Stennicke, H.R., Salvesen, G.S., Franke, T.F., Stanbridge, E., Frisch, S. and Reed, J.C. Regulation of cell death protease caspase-9 by phosphorylation. Science 13 (1998) 1318–1321.

    Article  Google Scholar 

  11. Shikama, Y.U.M., Miyashita, T. and Yamada, M. Comprehensive studies on subcellular localizations and cell death-inducing activities of eight GFPtagged apoptosis-related caspases. Exp. Cell Res. 264 (2001) 315–325.

    Article  PubMed  CAS  Google Scholar 

  12. Shimohama, S., Tanino, H. and Fujimoto, S. Differential subcellular localization of caspase family proteins in the adult rat brain, Neuroscience Lett. 315 (2001) 125–128.

    Article  CAS  Google Scholar 

  13. van Loo, G., Saelens, X., Matthijssens, F., Schotte, P., Beyaert, R., Declercq, W. and Vandenabeele, P. Caspases are not localized in mitochondria during life or death. Cell Death Diff. 9 (2002) 1207–1211.

    Article  Google Scholar 

  14. Potokar, M., Milisav, I., Kreft, M., Stenovec, M. and Zorec, R. Apoptosis triggered redistribution of caspase-9 from cytoplasm to mitochondria. FEBS Lett. 544 (2003) 153–159.

    Article  PubMed  CAS  Google Scholar 

  15. Zhivotovsky, B., Samali, A., Gahm, A. and Orrenius, S. Caspases: their intracellular localization and translocation during apoptosis. Cell Death Differ. 6 (1999) 644–651.

    Article  PubMed  CAS  Google Scholar 

  16. Yuan, H., Mutomba, M., Prinz, I. and Gottlieb, R.A. Differential processing of cytosolic and mitochondrial caspases. Mitochondrion 1 (2001) 61–69.

    Article  PubMed  CAS  Google Scholar 

  17. Susin, S.A., Lorenzo, H.K., Zamzami, N., Marzo, I., Brenner, C., Larochette, N., Prévost, M.-C., Alzari, P.M. and Kroemer, G. Mitochondrial release of caspase-2 and-9 during the apoptotic process. J. Exp. Med. 189 (1999) 381–393.

    Article  PubMed  CAS  Google Scholar 

  18. Krajewski, S., Krajewska, M., Ellerby, L.M., Welsh, K., Xie, Z., Deveraux, Q.L., Salvesen, G.S., Bredesen, D.E., Rosenthal, R.E., Fiskum, G. and Reed, J. Release of caspase-9 from mitochondria during neuronal apoptosis and cerebral ischemia. Proc. Natl. Acad. Sci. USA 96 (1999) 5752–5757.

    Article  PubMed  CAS  Google Scholar 

  19. Chandra, D. and Tang, D.G. Mitochondrially localized active caspase-9 and caspase-3 result mostly from translocation from the cytosol and partly from caspase-mediated activation in the organelle. J. Biol. Chem. 278 (2003) 17408–17420.

    Article  PubMed  CAS  Google Scholar 

  20. Saleh, A., Srinivasula, S.M., Acharya, S., Fishel, R. and Alnemri, E.S. Cytochrome c and dATP-mediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation. J. Biol. Chem. 274 (1999) 17941–17945.

    Article  PubMed  CAS  Google Scholar 

  21. Cain, K., Brown, D.G., Langlais, C. and Cohen, G.M. Caspase activation involves the formation of the aposome, a large (approximately 700 kDa) caspase-activating complex, J. Biol. Chem. 274 (1999) 22686–22692.

    Article  PubMed  CAS  Google Scholar 

  22. Ritter, P.M., Marti, A., Blanc, C., Baltzer, A., Krajewski, S., Reed, J.C. and Jaggi, R. Nuclear localization of procaspase-9 and processing by a caspase-3-like activity in mammary epithelial cells. Eur. J. Cell Biol. 79 (2001) 358–364.

    Article  Google Scholar 

  23. Bitzer, M., Armeanu, S., Prinz, F., Ungerechts, G., Wybranietz, W., Spiegel, M., Bernlöhr, C., Cecconi, F., Gregor, M., Neubert, W.J., Schulze-Osthoff, K. and Lauer, U.M. Caspase-8 and Apaf-1-independent caspase-9 activation in Sendai virus-infected cells. J. Biol. Chem. 277 (2002) 29817–29824.

    Article  PubMed  CAS  Google Scholar 

  24. Mokranjac, D. and Neupert, W. Protein import into mitochondria. Biochem. Soc. Trans. 33 (2005) 1019–1023.

    Article  PubMed  CAS  Google Scholar 

  25. Hoogenraad, N.J., Ward, L.A. and Ryan, M.T. Import and assembly of proteins into mitochondria of mammalian cells, Biochim. Biophys. Acta 1592 (2002) 97–105.

    Article  PubMed  CAS  Google Scholar 

  26. Stojanovski, D., Rissler, M., Pfanner, N. and Meisinger, C. Mitochondrial morphology and protein import — a tight connection? Biochim. Biophys. Acta 1763 (2006) 414–421.

    Article  PubMed  CAS  Google Scholar 

  27. Hartl, F.-U., Pfanner, N., Nicholson, D.W. and Neupert, W. Mitochondrial protein import. Biochim. Biophys. Acta 988 (1989) 1–45.

    PubMed  CAS  Google Scholar 

  28. Matocha, M.F. and Waterman, M.R. Discriminatory processing of the precursor forms of cytochrome P-450SCC and adrenodoxin by adrenocortical and heart mitochondria. J. Biol. Chem. 259 (1984) 8672–8678.

    PubMed  CAS  Google Scholar 

  29. Matocha, M.F. and Waterman, M.R. Synthesis and processing of mitochondrial steroid hydroxylases. J. Biol. Chem. 260 (1985) 12259–12265.

    PubMed  CAS  Google Scholar 

  30. DeSousa, G., Dou, M., Barbe, D., Lacarelle, B., Placidi, M. and Rahmani, R. Freshli isolated or cryopreserved human hepatocytes in primary culture: influence of drug metabolism on hepatotoxicity. Toxicol. in vitro 5 (1991) 483–486.

    Article  CAS  Google Scholar 

  31. Daum, G., Böhni, P. C. and Schatz, G. Import of proteins into mitochondria. Cytochrome b2 and cytochrome c peroxidase are located in the intermembrane space of yeast mitochondria. J. Biol. Chem. 257 (1982) 13028–13033.

    PubMed  CAS  Google Scholar 

  32. Werner, S. and Neupert, W. Functional and biogenetical heterogeneity of the inner membrane of rat-liver mitochondria. Eur. J. Biochem. 25 (1972) 379–396.

    Article  PubMed  CAS  Google Scholar 

  33. Bauer, M.F., Gempel, K., Reichert, A.S., Rappold, G.A., Lichtner, P., Gerbitz, K.-D., Neupert, W., Brunner, M. and Hofmann, S. Genetic and structural characterization of the human mitochondrial inner membrane translocase, J. Mol. Biol. 289 (1999) 69–82.

    Article  PubMed  CAS  Google Scholar 

  34. Duan, H., Orth, K., Chinnaiyan, A.M., Poirier, G.G., Froelich, C.J., He, W.W. and Dixit, V.M. ICE-LAP-6, a novel member of the ICE/Ced-3 gene family, is activated by the cytotoxic T cell protease granzyme B. J. Biol. Chem. 271 (1996) 16720–16724.

    Article  PubMed  CAS  Google Scholar 

  35. Rothbauer, U., Hofmann, S., Mühlenbein, N., Paschen, S.A., Gerbitz, K.-D., Neupert, W., Brunner, M. and Bauer, M.F. Role of the Deafness Dystonia Peptide 1 (DDP1) in Import of Human Tim23 into the Inner Membrane of Mitochondria. J. Biol. Chem. 276 (2001) 37327–37334.

    Article  PubMed  CAS  Google Scholar 

  36. Ungermann, C., Neupert, W. and Cyr, D.M. The role of Hsp70 in conferring unidirectionality on protein translocation into mitochondria. Science 266 (1994) 1250–1253.

    Article  PubMed  CAS  Google Scholar 

  37. Pelham, H.R. and Jackson, R.J. An efficient mRNA-dependent translation system from reticulocyte lysates. Eur. J. Biochem. 67 (1976) 247–256.

    Article  PubMed  CAS  Google Scholar 

  38. Luciano, P., Geoffroy, S., Brandt, A., Hernandez, J.-F. and Géli, V. Functional cooperation of the mitochondrial processing peptidase subunits. J. Mol. Biol. 272 (1997) 213–225.

    Article  PubMed  CAS  Google Scholar 

  39. Kaldi, K., Bauer, M.F., Sirrenberg, C., Neupert, W. and Brunner, M. Biogenesis of Tim23 and Tim17, integral components of the TIM machinery for matrix-targeted preproteins. EMBO J. 17 (1998) 1569–1576.

    Article  PubMed  CAS  Google Scholar 

  40. Gordon, D.M., Shi, Q., Dancis, A., Pain, D. Maturation of frataxin within mammalian and yeast mitochondria: one-step processing by matrix processing peptidase. Hum. Mol. Genet. 8 (1999) 2255–2262.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Milisav.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milisav, I., Šuput, D. Procaspase-9 is attached to the mitochondrial outer membrane in the early stages of apoptosis. Cell Mol Biol Lett 12, 509–522 (2007). https://doi.org/10.2478/s11658-007-0020-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-007-0020-3

Key words