Skip to main content

The identification of QTLs associated with the in vitro response of rye (Secale cereale L.)

Abstract

This study was conducted in order to identify quantitative trait loci (QTLs) for the in vitro culture response of winter rye (Secale cereale L.) immature embryos and immature inflorescences. A genetic linkage map comprising 67 SSRs, 9 ISSRs, 13 SAMPLs, 7 RAPDs, 2 SCARs and one EST marker was created based on the analyses of 102 recombinant inbred lines from the cross between lines L318 (which has a good response in tissue cultures) and L9 (which is unable to regenerate plants from somatic tissues and anthers). The map spans 979.2 cM, and the average distance between markers is 9.9 cM. Two characteristics were evaluated: callus induction (CI) and somatic embryogenesis ability (SE). They were expressed as the percentage of immature embryos/inflorescences producing callus (designated ECI/ICI) and the percentage of explants producing somatic embryos (ESE/ISE). All the analysed traits showed continuous variation in the mapping population but a non-normal frequency distribution. We identified nine putative QTLs controlling the tissue culture response of rye, explaining up to 41.6% of the total phenotypic variation: two QTLs for ECI — eci-1, eci-2; 4 for ESE — ece-1, ese-2, ese-3, ese-4; 2 for ICI — ici-1, ici2; and 1 for ISE — ise-1. They were detected on chromosomes 1R, 4R, 5R, 6R and 7R.

Abbreviations

CI:

callus induction

ECI:

percentage of immature embryos producing callus

ESE:

percentage of immature embryos producing embryogenic callus

ICI:

percentage of immature inflorescences producing callus

ISE:

percentage of immature inflorescences producing embryogenic callus

GDDSC:

genetically directed differential subtraction chain

MAS:

marker assisted selection

QTL:

quantitative trait locus

RIL:

recombinant inbred line

SE:

somatic embryogenesis ability

TCR:

tissue culture response

References

  1. 1.

    Rybczyński, J.J. In vitro culture of Secale cereale L. explants — callus formation and organ differentiation. Acta Soc. Bot. Pol. 49 (1980) 155–166.

    Google Scholar 

  2. 2.

    Rakoczy-Trojanowska, M. and Malepszy, S. Genetic factors influencing regeneration ability in rye (Secale cereale L.). I. Immature inflorescences. Theor. Appl. Genet. 86 (1993) 406–410.

    Article  Google Scholar 

  3. 3.

    Zimny, J. and Lörz, H. High frequency of somatic embryogenesis and plant regeneration of rye (Secale cereale L.). Plant Breed. 102 (1989) 89–100.

    Article  Google Scholar 

  4. 4.

    Linacero, R. and Vazquez, A.M. Somatic embryogenesis from immature inflorescences of rye. Plant Science 72 (1990) 253–258.

    Article  CAS  Google Scholar 

  5. 5.

    Rakoczy-Trojanowska, M. and Malepszy, S. Genetic factors influencing the regeneration ability of rye (Secale cereale L.). II. Immature embryos. Euphytica 83 (1995) 233–239.

    Article  Google Scholar 

  6. 6.

    Popelka, J.C. and Altpeter, F. Interactions between genotypes and culture media components for improved in vitro response of rye (Secale cereale L.) inbred lines. Plant Cell Rep. 20 (2001) 575–582.

    Article  CAS  Google Scholar 

  7. 7.

    Krumbiegel-Schroeren, G., Schroeren, V. and Binding, H. Embroid formation and plant regeneration from callus of Secale cereale. Z. Pflanzenzüchtg. 92 (1984) 89–94.

    Google Scholar 

  8. 8.

    Flehinghaus-Roux, T., Deimling, S. and Geiger, H.H. Anther culture ability in Secale cereale L. Plant Breed. 114 (1995) 259–261.

    Article  Google Scholar 

  9. 9.

    Bolibok, H. and Rakoczy-Trojanowska, M. Genetic mapping of QTLs for tissue-culture response in plants. Euphytica 149 (2006) 73–83.

    Article  CAS  Google Scholar 

  10. 10.

    Taguchi-Shiobara, F., Lin, S.Y., Tanno, K., Komatsuda, T., Yano, M., Sasaki, T. and Oka, S. Mapping quantitative trait loci associated with regeneration ability of seed callus in rice, Oryza sativa L. Theor. Appl. Genet. 95 (1997) 828–833.

    Article  CAS  Google Scholar 

  11. 11.

    Ben Amer, I.M., Korzun, V., Worland, A.J. and Börner, A. Genetic mapping of QTL controlling tissue-culture response on chromosome 2B of wheat (Triticum aestivum L.) in relation to major genes and RFLP markers. Theor. Appl. Genet. 94 (1997) 1047–1052.

    Article  CAS  Google Scholar 

  12. 12.

    Murigneux, A., Bentollila, S., Hardy, T., Baud, S., Guitton, C., Jullien, H., Ben Tahar S., Freyssinet, G. and Beckert, M. Genotypic variation of quantitative trait loci controlling in vitro androgenesis in maize. Genome 37 (1994) 970–976.

    Article  PubMed  CAS  Google Scholar 

  13. 13.

    Mano, Y. and Komatsuda, T. Identification of QTLs controlling tissue-culture traits in barley (Hordeum vulgare L.). Theor. Appl. Genet. 105 (2002) 708–715.

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Murashige, F. And Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant 15 (1962) 473–497

    Article  CAS  Google Scholar 

  15. 15.

    Bliss, C.I. The Transformation of Percentages for Use in the Analysis of Variance. Ohio J. Sci. 38 (1938) 9–12.

    Google Scholar 

  16. 16.

    Murray, M.G., and Thompson, W.F. Rapid isolation of high molecular weight plant DNA. Nucleic Acid Res. 8 (1980) 4321–4325.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Bolibok, H., Rakoczy-Trojanowska, M., Wyrzykowska, M., Radecka, M. and Orczyk, W. Identification of microsatellite markers in the rye genome. Cell. Mol. Biol. Lett. 11 (2006) 291–298.

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Saal, B. and Wricke, G. Development of simple sequence repeat markers in rye (Secale cereale L.). Genome 42 (1999) 964–972.

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Hackauf, B. and Wehling, P. Identification of microsatellite polymorphisms in expressed portion of the rye genome. Plant Breed. 121 (2002) 17–25.

    Article  CAS  Google Scholar 

  20. 20.

    Khlestkina, E.K., Than, M.H.M., Pestsova, E.G., Röder, M.S., Malyshev, S.V., Korzun, V. and Börner, A. Mapping of 99 new microsatellite-derived loci in rye (Secale cereale L.) including 39 expressed sequence tags. Theor. Appl. Genet. 19 (2004) 725–732.

    Article  CAS  Google Scholar 

  21. 21.

    Röder, M.S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M.H., Leroy, P. and Ganal, M.W. A microsatellite map of wheat. Mol. Gen. Genet. 246 (1998) 327–333.

    Article  Google Scholar 

  22. 22.

    Bolibok, H., Rakoczy-Trojanowska, M., Hromada, A. and Pietrzykowski, R. The efficiency of different PCR-based marker system in assessing genetic diversity among winter rye (Secale cereale L.) inbred lines. Euphytica 146 (2005) 109–115.

    Article  CAS  Google Scholar 

  23. 23.

    Lander, E.S., Green, P., Abrahamson, J., Barlow, A., Daly, M.J., Lincoln, S.E. and Newberg, L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1 (1987) 174–181.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Kosambi, D.D. The estimation of map distances from recombination values. Ann. Eugen. 12 (1944) 172–175.

    Google Scholar 

  25. 25.

    Lincoln, S., Daly, M. and Lander, E. Mapping genes controlling quantitative traits with MAPMAKER/QTL 1.1. Whitehead Institute Technical Report 2nd edn. (1992).

  26. 26.

    Grosse, B.A., Deimling, S. and Geiger, H.H. Mapping of genes for anther culture ability in rye by molecular markers. Vortr. Pflanzenzuechtg. 35 (1996) 282–283.

    Google Scholar 

  27. 27.

    Flores Berrios, E., Sarrafi, A., Fabre, F., Alibert, G. and Gentzbittel, L. Genotypic variation and chromosomal location of QTLs for somatic embryogenesis revealed by epidermal layers culture of recombinant inbred lines in the sunflower (Helianthus annuus L.). Theor. Appl. Genet. 101 (2000b) 1307–1312.

    Article  Google Scholar 

  28. 28.

    Hackauf, B. and Wehling, P. Development of microsatellite markers in rye: map construction. Plant Breed Seed Sci. 48 (2003) 143–151.

    Google Scholar 

  29. 29.

    Philipp, U., Wehling, P. and Wricke, G. A linkage map of rye. Theor. Appl. Genet. 88 (1994) 243–248.

    Article  CAS  Google Scholar 

  30. 30.

    Senft, P. and Wricke, G. An extended genetic map of rye (Secale cereale L.). Plant Breed. 115 (1996) 508–510.

    Article  Google Scholar 

  31. 31.

    Korzun, V., Malyshev, S., Voylokov, A.V. and Börner, A. A genetic map of rye (Secale cereale L.) combining RFLP, isozyme, protein, microsatellite and gene loci. Theor. Appl. Genet. 102 (2001) 709–717.

    Article  CAS  Google Scholar 

  32. 32.

    Ma, X.F., Wanous, M.K., Houchins, K., Rodriguez Milla, M.A., Goicoechea, P.G., Wang, Z., Xie, M. and Gustafson, J.P. Molecular linkage mapping in rye (Secale cereale L). Theor. Appl. Genet. 102 (2001) 517–523.

    Article  CAS  Google Scholar 

  33. 33.

    He, P., Sheng, L., Lu, C., Chen, Y. and Zhu, L. Analysis of quantitative trait loci which contribute to anther culturability in rice (Oryza sativa L.). Mol. Breed. 4 (1998) 165–172.

    Article  CAS  Google Scholar 

  34. 34.

    Manninen, O.M. Associations between anther-culture response and molecular markers on chromosomes 2H, 3H and 4H of barley (Hordeum vulgare L.). Theor. Appl. Genet. 100 (2000) 57–62.

    Article  CAS  Google Scholar 

  35. 35.

    Torp, A.M., Hansen, A.L. and Andersen, S.B. Chromosomal regions associated with green plant regeneration in wheat (Triticum aestivum L.) anther culture. Euphytica 119 (2001) 377–387.

    Article  CAS  Google Scholar 

  36. 36.

    Kwon, Y.S., Kim, K.M., Eun, M.Y. and Sohn, J.K. QTL mapping and associated marker selection for the efficacy of green plant regeneration in anther culture of rice. Plant Breed. 12 (2002) 10–16.

    Article  Google Scholar 

  37. 37.

    Lazar, M.D., Chen, T.H.H., Scoles, G.J. and Kartha, K.K. Immature embryo and anther culture of chromosome addition lines of rye in Chinese Spring wheat. Plant Sci. 51 (1987) 77–81.

    Article  Google Scholar 

  38. 38.

    Nishimura, A., Ashikari, M., Lin, S., Takashi, T., Angeles, E.R., Yamamoto, T. and Matsuoka, M. Isolation of a rice regeneration quantitative trait loci gene and its application to transformation systems. Proc. Natl. Acad. Sci. USA 102 (2005) 11940–11944.

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Hromada, A., Bolibok, H. and Rakoczy-Trojanowska, M. Application of the GDDSC for the isolation of winter rye (Secale cereale L.) genome regions connected with in vitro reaction of immature embryos. Vortr. Pflanzenzuechtg, in press.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Monika Rakoczy-Trojanowska.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bolibok, H., Gruszczyńska, A., Hromada-Judycka, A. et al. The identification of QTLs associated with the in vitro response of rye (Secale cereale L.). Cell Mol Biol Lett 12, 523–535 (2007). https://doi.org/10.2478/s11658-007-0023-0

Download citation

Key words

  • Rye
  • Secale cereale L.
  • Somatic embryogenesis
  • Tissue culture
  • Immature embryos
  • Immature inflorescences
  • Molecular marker
  • QTL
  • Genetic mapping