Skip to main content

The expression of endothelin type A and B receptors in the lateral wall of the mouse cochlea

Abstract

Endothelin (ET), originally characterized as a vasoconstrictive peptide, has been found to have many different biological functions, including acting as a local hormonal regulator of pressure, fluid, ions and neurotransmitters in the inner ear. The objective of this study was to examine and quantify the mRNA expression of the endothelin type A and B receptors (ETAR and ETBR) in the strial vascularies (StV) and non-strial tissues (NSt) of the cochlear lateral wall using the real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR) technique. The mouse tissue samples were harvested and RNA was extracted. RT was performed to obtain cDNA, and then the mRNA expression of each gene was measured via real-time PCR. We found that both receptor subtypes were expressed in the cochlear lateral wall, with a predominance of ETAR over ETBR. We showed that the mRNA expression of the two receptor subtypes was higher in the StV with a 1.8 times higher level of ETAR and an 8.1 times higher level of ETBR mRNAs than in the adjacent NSt of the lateral wall tissue. This study shows the existence and the quantity of ET receptor subtypes in the StV and NSt of the mouse cochlea. Our results suggest that an endothelin-mediated response via two different receptors, ETAR and ETBR, may play an important role in the physiological functions of the cochlear lateral wall by maintaining the homeostatic environment of the cochlea.

Abbreviations

ANP:

atrial natriuretic peptide

Ct:

cycle threshold

ET:

endothelin

ETAR:

endothelin type A receptor

ETBR:

endothelin type B receptor

NO:

nitric oxide

NSt:

non-strial tissues

PG:

prostaglandins

RQ:

relative quantity

RT-PCR:

reverse transcription-polymerase chain reaction

StV:

strial vascularies

References

  1. 1.

    Yanagisawa, M., Kurihara, H., Kimura, S., Tomobe, Y., Kobayashi, M., Mitui, Y., Azaki, Y., Goto, K. and Masaki, T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 33 (1988) 411–415.

    Article  Google Scholar 

  2. 2.

    Hosoda, K., Hammer, R.E., Richardson, J.A., Baynash, A.G., Joto, H., McCarron, R.M., Inoue, A., Yanagisawa, M. and Kimura, S. The human endothelin family: three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc. Natl. Acad. 86 (1989) 2863–2867.

    Article  Google Scholar 

  3. 3.

    Levin, E.R. Endothelins. N. Engl. J. Med. 333 (1995) 356–363.

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Masaki, T., Kimura, S., Yanagisawa, M. and Goto, K. Molecular and cellular mechanism of endothelin regulation: implications for vascular function. Circulation 84 (1991) 1457–1468.

    PubMed  CAS  Google Scholar 

  5. 5.

    Haynes, W.G. and Webb, D.J. Endothelin as a regulator of cardiovascular function in health and disease. J. Hypertens. 16 (1998) 1081–1089.

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Brown, M.A. and Smith, P.L. Endothelin: a potent stimulator of intestinal ion secretion in vitro. Regul. Pept. 36 (1991) 1–19.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Shichiri, M., Hirata, Y., Nakajima, T., Ando, K., Imai, T. and Yanagisawa, M. Endothelin-1 is an autocrine/paracrine growth factor for human cancer cell lines. J. Clin. Invest. 87 (1991) 1867–1871.

    PubMed  CAS  Article  Google Scholar 

  8. 8.

    Matsuura, A., Yamochi, W., Hirata, K., Kawashima, S. and Yokoyama, M. Stimulatory interaction between vascular endothelial growth factor and endothelin-1 on each gene expression. Hypertension 32 (1998) 89–95.

    PubMed  CAS  Google Scholar 

  9. 9.

    Evans, J.J., Youssef, A.H., Yandle, T.G., Lewis, L.K. and Nicholls, M.G. Effects of endothelin-1 on release of adrenomedullin and C-type natriuretic peptide from individual human vascular endothelial cells. J. Endocrinol. 175 (2002) 225–232.

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Jinnouchi, K., Tomiyama, S. and Pawankar, S. Distribution of endothelin-1-like activity in the cochlea of normal guinea pigs. Acta Otolaryngol. 117 (1997) 41–45.

    PubMed  CAS  Google Scholar 

  11. 11.

    Jinnouchi, K., Tomiyama, S. and Pawankar, R. Distribution of endothelin-1-like activity in the vestibule of normal guinea pigs. ORL J. Otorhinolaryngol. Relat. Spec. 58 (1996) 4–8.

    PubMed  CAS  Google Scholar 

  12. 12.

    Jinnouchi, K., Tomiyama, S. and Pawankar, R. Distribution of endothelin-1 like activity in the endolymphatic sac of normal guinea pigs. Acta Otolaryngol. 115 (1995) 400–404.

    PubMed  CAS  Google Scholar 

  13. 13.

    Fujimura, T., Furukawa, H., Doi, Y., Makishima, K. and Fujimoto, S. Immunoreactivity of endothelins and endothelin receptor in the stria vascularis of the mouse cochlea. Hear. Res. 128 (1999) 135–146.

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Xu, X.N., Huang, J.M., Lin, G.J. and Jiang, Z.Z. Contributions of endothelin in the process of the noise-induced in jury of inner ear. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 40 (2005) 509–512.

    PubMed  Google Scholar 

  15. 15.

    Higuchi, R., Fockler, C., Dollinger, G. and Watson, R. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Mar. Biotechnol. 11 (1993) 1026–1030.

    CAS  Google Scholar 

  16. 16.

    Livak, K. and Schmittgen, T. Analysis of relative gene expression data using real-time quantitative PCR and the 2−δδCt method. Methods 25 (2001) 402–408.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Marcus, D.C. and Chiba, T. K+ and Na+ absorption by outer sulcus epithelial cells. Hear. Res. 134 (1999) 48–56.

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Wangemann, P. K+ cycling and its regulation in the Cochlea and the vestibular labyrinth. Audiol. Neurootol. 7 (2002) 199–205.

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Franz, P., Hauser-Kronberger, C. and Egerbacher, M. Localization of endothelin-1 and endothelin-3 in the cochlea. Acta Otolaryngol. 117 (1997) 358–362.

    PubMed  CAS  Google Scholar 

  20. 20.

    Sadanaga, M., Liu, J. and Wangemann, P. Endothelin-A receptors mediate vasoconstriction of capillaries in the spiral ligament. Hear. Res. 112 (1997) 106–114.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Haynes, W., Strachan, F. and Webb, D. Endothelin ETAR and ETBR receptors cause vasoconst riction of human resistance and capacitance vessels in vivo. Circulation 92 (1995) 357–363.

    PubMed  CAS  Google Scholar 

  22. 22.

    Kobayshi, T., Miyauchi, T., Sakai, S., Maeda, S., Yamaguchi, I. and Goto, K. Down-regulation of ET(B) receptor, but not ET(A) receptor, in congestive lung secondary to heart failure. Are marked increases in circulating endothelin-1 partly attributable to decreases in lung ET(B) receptor-mediated clearance of endothelin-1? Life Sci. 62 (1998) 185–193

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yuedi Tang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Luo, Y., Tang, Y., Xia, Q. et al. The expression of endothelin type A and B receptors in the lateral wall of the mouse cochlea. Cell Mol Biol Lett 12, 595–603 (2007). https://doi.org/10.2478/s11658-007-0027-9

Download citation

Key words

  • ETAR
  • ETBR
  • Real time quantitative RT-PCR
  • Cochlea