Skip to main content

Brain proteins interacting with the tetramerization region of non-erythroid alpha spectrin

Abstract

The N-terminal region of non-erythroid alpha spectrin (SpαII) is responsible for interacting with its binding partner, beta spectrin, to form functional spectrin tetramers. We used a yeast-two-hybrid system, with an N-terminal segment of alpha spectrin representing the functional tetramerization site, as a bait to screen human brain c-DNA library for proteins that interact with the alpha spectrin segment. In addition to several beta spectrin isoforms, we identified 14 proteins that interact with SpαII. Seven of the 14 were matched to 6 known proteins: Duo protein, Lysyl-tRNA synthetase, TBP associated factor 1, two isoforms (b and c) of a protein kinase A interacting protein and Zinc finger protein 333 (2 different segments). Four of the 6 proteins are located primarily in the nucleus, suggesting that spectrin plays important roles in nuclear functions. The remaining 7 proteins were unknown to the protein data base. Structural predictions show that many of the 14 proteins consist of a large portion of unstructured regions, suggesting that many of these proteins fold into a rather flexible conformation. It is interesting to note that all but 3 of the 14 proteins are predicted to consist of one to four coiled coils (amphiphilic helices). A mutation in SpαII, V22D, which interferes with the coiled coil bundling of SpαII with beta spectrin, also affects SpαII interaction with Duo protein, TBP associated factor 1 and Lysyl-tRNA synthetase, suggesting that they may compete with beta spectrin for interaction with SpαII. Future structural and functional studies of these proteins to provide interaction mechanisms will no doubt lead to a better understanding of brain physiology and pathophysiology.

Abbreviations

KRAB:

Krueppel-associated box

QDO:

quadruple drop-out

PKA:

protein kinase A

SH3:

src homology 3

SpαII:

non-erythroid alpha spectrin

SpI:

erythroid spectrin

SpβII:

spectrin beta II

TBP:

TATA box binding protein

TDO:

triple drop-out

References

  1. 1.

    Yu, J., Fischman, D.A. and Steck, T.L. Selective solubilization of proteins and phospholipids from red blood cell membranes by nonionic detergents. J. Supramol. Struct. 1 (1973) 233–248.

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Mohandas, N., Chasis, J.A. and Shohet, S.B. The influence of membrane skeleton on red cell deformability, membrane material properties, and shape. Semin. Hematol. 20 (1983) 225–242.

    PubMed  CAS  Google Scholar 

  3. 3.

    Park, S., Caffrey, M.S., Johnson, M.E. and Fung, L.W. Solution structural studies on human erythrocyte alpha-spectrin tetramerization site. J. Biol. Chem. 278 (2003) 21837–21844.

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Yan, Y., Winograd, E., Viel, A., Cronin, T., Harrison, S.C. and Branton, D. Crystal structure of the repetitive segments of spectrin. Science 262 (1993) 2027–2030.

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Pascual, J., Pfuhl, M., Rivas, G., Pastore, A. and Saraste, M. The spectrin repeat folds into a three-helix bundle in solution. FEBS Lett. 383 (1996) 201–207.

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Mehboob, S., Luo, B.H., Johnson, M.E. and Fung, L.W.-M. Conformational studies of the tetramerization site of the human erythroid spectrin by cysteine-scanning spin-labeling EPR methods. Biochemistry 44 (2005) 15898–15905.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Mehboob, S., Luo, B.H. and Fung, L.W.-M. αβ spectrin association: A model system to mimic helical bundling at the tetramerization site. Biochemistry 40 (2001) 12457–12464.

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Hiller, G. and Weber, K. Spectrin is absent in various tissue culture cells. Nature 266 (1977) 181–183.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Beck, K.A. and Nelson, W.J. A spectrin membrane skeleton of the Golgi complex. Biochim. Biophys. Acta. 1404 (1998) 153–160.

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Goodman, S.R. Discovery of nonerythroid spectrin to the demonstration of its key role in synaptic transmission. Brain Res. Bull. 50 (1999) 345–346.

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    De Matteis, M.A. and Morrow, J.S. Spectrin tethers and mesh in the biosynthetic pathway. J. Cell Sci. 113 (2000) 2331–2343.

    PubMed  Google Scholar 

  12. 12.

    Gascard, P. and Mohandas N. New insights into functions of erythroid proteins in nonerythroid cells. Curr. Opin. Hematol. 7 (2000) 123–129.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Kordeli, E. The spectrin-based skeleton at the postsynaptic membrane of the neuromuscular junction. Microsc. Res. Tech. 49 (2000) 101–107.

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Bennett, V. and Baines, A.J. Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. Physiol. Rev. 81 (2001) 1353–1392.

    PubMed  CAS  Google Scholar 

  15. 15.

    Giorgi, M., Cianci, C., Gallagher, P. and Morrow, J.S. Spectrin oligomerization is cooperatively coupled to membrane assembly: A linkage targeted by many hereditary hemolytic anemias? Exp. Mol. Pathol. 70 (2001) 215–230.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Djinovic-Carugo, K., Gautel, M., Ylanne, J. and Young, P. The spectrin repeat: a structural platform for cytoskeletal protein assemblies. FEBS Lett. 513 (2002) 119–123.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Lee, J.K., Coyne, R.S., Dubreuil, R.R., Goldstein, L.S. and Branton, D. Cell shape and interaction defects in alpha-spectrin mutants of Drosophila melanogaster. J. Cell Biol. 123 (1993) 1797–1809.

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Pinder, J.C. and Baines, A.J. A protein accumulator. Nature 406 (2000) 253–254.

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    McMahon, L.W., Sangerman, J., Goodman, S.R., Kumaresan, K. and Lambert, M.W. Human alpha spectrin II and the FANCA, FANCC and FANCG proteins bind to DNA containing psoralen interstrand cross-links. Biochemistry 40 (2001) 7025–7034.

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Sridharan, D.M., McMahon, L.W. and Lambert, M.W. alphaII-Spectrin interacts with five groups of functionally important proteins in the nucleus. Cell Biol. Int. 30 (2006) 866–878

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Goodman, S.R., Zimmer, W.E., Clark, M.B., Zagon, I.S., Barker, J.E. and Bloom, M.L. Brain spectrin: of mice and men. Brain Res. Bull. 36 (1995) 593–606.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Kanda, K., Tanaka, T. and Sobue, K. Calspectin (fodrin or nonerythroid spectrin)-actin interaction: a possible involvement of 4.1-related protein. Biochem. Biophys. Res. Commun. 140 (1986) 1051–1058.

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Tsukita, S., Tsukita, S., Ishikawa, H., Kurokawa, M., Morimoto, K., Sobue, K. and Kakiuchi, S. Binding sites of calmodulin and actin on the brain spectrin, calspectin. J. Cell Biol. 97 (1983) 574–578.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Sobue, K., Kanda, K. and Kakiuchi, S. Solubilization and partial purification of protein kinase systems from brain membranes that phosphorylate calspectin. A spectrin-like calmodulin-binding protein (fodrin). FEBS Lett. 150 (1982) 185–190.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Riederer, B.M., Lopresti, L.L., Krebs, K.E., Zagon, I.S. and Goodman, S.R. Brain spectrin(240/235) and brain spectrin(240/235E): conservation of structure and location within mammalian neural tissue. Brain Res Bull. 21 (1988) 607–616.

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Ohara, O., Ohara, R., Yamakawa, H., Nakajima, D. and Nakayama, M. Characterization of a new beta-spectrin gene which is predominantly expressed in brain. Brain Res. Mol. Brain Res. 57 (1998) 181–192.

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Stankewich, M.C., Tse, W.T., Peters, L.L., Ch’ng, Y., John, K.M., Stabach, P.R., Devarajan, P., Morrow, J.S. and Lux, S.E. A widely expressed betaIII spectrin associated with Golgi and cytoplasmic vesicles. Proc. Natl. Acad. Sci. U. S. A. 95 (1998) 14158–14163.

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Levine, J. and Willard, M. Fodrin: axonally transported polypeptides associated with the internal periphery of many cells. J. Cell. Biol. 90 (1981) 631–642.

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Burridge, K., Kelly, T. and Mangeat, P. Nonerythrocyte spectrins: actinmembrane attachment proteins occurring in many cell types. J. Cell. Biol. 95 (1982) 478–486.

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Bachs, O., Lanini, L., Serratosa, J., Coll, M.J., Bastos, R., Aligue, R., Rius, E. and Carafoli, E. Calmodulin-binding proteins in the nuclei of quiescent and proliferatively activated rat liver cells. J. Biol. Chem. 265 (1990) 18595–18600.

    PubMed  CAS  Google Scholar 

  31. 31.

    Vendrell, M., Aligue, R., Bachs, O. and Seratosa, J. Presence of calmodulin and calmodulin-binding proteins in the nuclei of brain cells. J. Neurochem. 57 (1991) 622–628.

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Sumandea, C.A. and Fung, L.W.-M. Mutational Effects at the Tetramerization Site of Nonerythroid Alpha Spectrin. Mol. Brain Res. 136 (2005) 81–90.

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Tse, W.T., Tang, J., Jin, O., Korsgren, C., John, K.M., Kung, A.L., Gwynn, B., Peters, L.L. and Lux, S.E. A new spectrin, beta IV, has a major truncated isoform that associates with promyelocytic leukemia protein nuclear bodies and the nuclear matrix. J. Biol. Chem. 276 (2001) 23974–23985.

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Nagase, T., Kikuno, R., Hattori, A., Kondo, Y., Okumura, K. and Ohara, O. Prediction of the coding sequences of unidentified human genes. XIX. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. DNA Res. 7 (2000) 347–355.

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Colomer, V., Engelender, S., Sharp, A.H., Duan, K., Cooper, J.K., Lanahan, A., Lyford, G., Worley, P. and Ross, C.A. Huntingtin-associated protein 1 (HAP1) binds to a Trio-like polypeptide, with a rac1 guanine nucleotide exchange factor domain. Hum. Mol. Genet. 6 (1997) 1519–1525.

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Freist, W. and Gauss, D.H. Lysyl-tRNA synthetase. Biol. Chem. Hoppe. Seyler. 376 (1995) 451–472.

    PubMed  CAS  Google Scholar 

  37. 37.

    Tolkunova, E., Park, H., Xia, J., King, M.P. and Davidson, E. The human lysyltRNA synthetase gene encodes both the cytoplasmic and mitochondrial enzymes by means of an unusual alternative splicing of the primary transcript. J. Biol. Chem. 275 (2000) 35063–35069.

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Hisatake, K., Hasegawa, S., Takada, R., Nakatani, Y., Horikoshi, M., Roeder, R.G. The p250 subunit of native TATA box-binding factor TFIID is the cellcycle regulatory protein CCG1. Nature 362 (1993) 179–181.

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Jacobson, R.H., Ladurner, A.G., King, D.S., Tjian, R. Structure and function of a human TAFII250 double bromodomain module. Science 288 (2000) 1422–1425.

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Maile, T., Kwoczynski, S., Katzenberger, R.J., Wassarman, D.A., Sauer, F. TAF1 activates transcription by phosphorylation of serine 33 in histone H2B. Science 304 (2004) 1010–1014.

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Tian, Y., Breedveld, G.J., Huang, S., Oostra, B.A., Heutink, P. and Lo, W.H. Characterization of ZNF333, a novel double KRAB domain containing zinc finger gene on human chromosome 19p13.1. Biochim. Biophys. Acta. 1577 (2002) 121–125.

    PubMed  CAS  Google Scholar 

  42. 42.

    Jing, Z., Liu, Y., Dong, M., Hu, S. and Huang, S. Identification of the DNA binding element of the human ZNF333 protein. J. Biochem. Mol. Biol. 37 (2004) 663–670.

    PubMed  CAS  Google Scholar 

  43. 43.

    Sastri, M., Barraclough, D.M., Carmichael, P.T. and Taylor, S.S. A-kinaseinteracting protein localizes protein kinase A in the nucleus. Proc. Natl. Acad. Sci. U. S. A. 102 (2005) 349–354.

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Narayan, V.A., Kriwacki, R.W. and Caradonna, J.P. Structures of zinc finger domains from transcription factor Sp1. Insights into sequence-specific protein-DNA recognition. J Biol. Chem. 272 (1997) 7801–7809.

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Yang, M., Wu, Z. and Field, S. Protein-protein interactions analyzed with the yeast two-hybrid system. Nucleic Acid Res. 23 (1995) 1152–1156.

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Mehboob, S., Jacob, J., May, M., Kotula, L., Thiyagarajan, P., Johnson, M.E. and Fung, L.W.-M. Structural analysis of the alpha N-terminal region of erythroid and nonerythroid spectrins by small-angle X-ray scattering. Biochemistry 42 (2003) 14702–14710.

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    Adamson, J.G., Zhou, N.E. and Hodges, R.S. Structure, function and application of the coiled-coil protein folding motif. Curr. Opin. Biotechnol. 4 (1993) 428–437.

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    McMahon, L.W., Walsh, C.E. and Lambert, M.W. Human alpha spectrin II and the Fanconi anemia proteins FANCA and FANCC interact to form a nuclear complex. J. Biol. Chem. 274 (1999) 32904–32908.

    PubMed  Article  CAS  Google Scholar 

  49. 49.

    Sridharan, D., Brown, M., Lambert, W.C., McMahon, L.W. and Lambert, M.W. Nonerythroid alphaII spectrin is required for recruitment of FANCA and XPF to nuclear foci induced by DNA interstrand cross-links. J. Cell. Sci. 116 (2003) 823–835.

    PubMed  Article  CAS  Google Scholar 

  50. 50.

    Lallena, M.J. and Correas, I. Transcription-dependent redistribution of nuclear protein 4.1 to SC35-enriched nuclear domains. J. Cell Sci. 110 (1997) 239–247.

    PubMed  CAS  Google Scholar 

  51. 51.

    Lallena, M.J., Martinez, C., Valcarcel, J. and Correas, I. Functional association of nuclear protein 4.1 with pre-mRNA splicing factors. J. Cell Sci. 111 (1998) 1963–1971.

    PubMed  CAS  Google Scholar 

  52. 52.

    Mattagajasingh, S.N., Huang, S.C., Hartenstein, J.S., Snyder, M., Marchesi, V.T. and Benz, E.J. A nonerythroid isoform of protein 4.1R interacts with the nuclear mitotic apparatus (NuMA) protein. J. Cell Biol. 5 (1999) 29–43.

    Article  Google Scholar 

  53. 53.

    Ye, K., Compton, D.A., Lai, M.M., Walensky, L.D. and Snyder, S.H. Protein 4.1N binding to nuclear mitotic apparatus protein in PC12 cells mediates the antiproliferative actions of nerve growth factor. J. Neurosci. 19 (1999) 10747–10756.

    PubMed  CAS  Google Scholar 

  54. 54.

    Carmo-Fonseca, M. The contribution of nuclear compartmentalization to gene regulation. Cell 108 (2002) 513–521.

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    Chubb, J.R. and Bickmore, W.A. Considering nuclear compartmentalization in the light of nuclear dynamics. Cell 112 (2003) 403–406.

    PubMed  Article  CAS  Google Scholar 

  56. 56.

    Palstra, R.J., Tolhuis, B., Splinter, E., Nijmeijer, R., Grosveld, F. and de Laat, W. The beta-globin nuclear compartment in development and erythroid differentiation. Nat. Genet. 35 (2003) 190–194.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Leslie W. -M. Fung.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Oh, Y., Fung, L.W.-. Brain proteins interacting with the tetramerization region of non-erythroid alpha spectrin. Cell Mol Biol Lett 12, 604–620 (2007). https://doi.org/10.2478/s11658-007-0028-8

Download citation

Key words

  • Spectrin
  • Tetramerization site
  • Protein-protein interaction
  • Yeast-two hybrid system
  • Brain protein
  • Spectrin mutation