Skip to main content
  • Short Communication
  • Published:

The inhibition of in vivo tumorigenesis of osteosarcoma (OS)-732 cells by antisense human osteopontin RNA

Abstract

Osteopontin (OPN) is a secreted, non-collagenous, sialic acid-rich protein which functions by mediating cell-matrix interactions and cellular signaling via binding with integrins and CD44 receptors. An increasing number of studies have shown that OPN plays an important role in controlling cancer progression and metastasis. OPN was found to be expressed in many human cancer types, and in some cases, its over-expression was shown to be directly associated with poor patient prognosis. In vitro cancer cell line and animal model studies have clearly indicated that OPN can function in regulating the cell signaling that ultimately controls the oncogenic potential of various cancers. Previous studies in our laboratory demonstrated that OPN is highly expressed in human osteosarcoma (OS) cell line OS-732. In this study, we successfully reduced the tumorigenecity of OS-732 cells xenotransplanted into nude mice, using the antisense human OPN (hOPN) RNA expression vector.

Abbreviations

hOPN:

human OPN

OPN:

osteopontin

OS:

osteosarcoma

References

  1. Furger, K.A., Menon, R.K., Tuck, A.B., Bramwell, V.H. and Chambers, A.F. The functional and clinical roles of osteopontin in cancer and metastasis. Curr. Mol. Med. 1 (2001) 621–632.

    Article  PubMed  CAS  Google Scholar 

  2. Rittling, S.R. and Chambers, A.F. Role of osteopontin in tumour progression. Br. J. Cancer 90 (2004) 1877–1881.

    Article  PubMed  CAS  Google Scholar 

  3. Rangaswami, H., Bulbule, A. and Kundu, G.C. Osteopontin: role in cell signaling and cancer progression. Trends Cell. Biol. 16 (2006) 79–87.

    Article  PubMed  CAS  Google Scholar 

  4. Weber, G.F. The metastasis gene osteopontin: a candidate target for cancer therapy. Biochim. Biophys. Acta 1552 (2001) 61–85.

    PubMed  CAS  Google Scholar 

  5. El-Tanani, M.K., Campbell, F.C., Kurisetty, V., Jin, D., McCann, M. and Rudland, P.S. The regulation and role of osteopontin in malignant transformation and cancer. Cytokine Growth Factor Rev. 17 (2006) 463–474.

    Article  PubMed  CAS  Google Scholar 

  6. Fedarko, N.S., Jain, A., Karadag, A. and Fisher, L.W. Three small integrin binding ligand N-linked glycoproteins (SIBLINGs) bind and activate specific matrix metalloproteinases. FASEB. J. 18 (2004) 734–736.

    PubMed  CAS  Google Scholar 

  7. Haqq, C., Nosrati, M., Sudilovsky, D., Crothers, J., Khodabakhsh, D., Pulliam, B.L., Federman, S., Miller, J.R., Allen, R.E., Singer, M.I., Leong, S.P., Ljung, B.M., Sagebiel, R.W. and Kashani-Sabet, M. The gene expression signatures of melanoma progression. Proc. Natl. Acad. Sci. USA 102 (2005) 6092–6097.

    Article  PubMed  CAS  Google Scholar 

  8. Chakraborty, G., Jain, S., Behera, R., Ahmed, M., Sharma, P., Kumar, V. and Kundu, G.C. The multifaceted roles of osteopontin in cell signaling, tumor progression and angiogenesis. Curr. Mol. Med. 6 (2006) 819–830.

    Article  PubMed  CAS  Google Scholar 

  9. Wai, P.Y. and Kuo, P.C. The role of Osteopontin in tumor metastasis. J. Surg. Res. 121 (2004) 228–241.

    Article  PubMed  CAS  Google Scholar 

  10. Gardner, H.A., Berse, B. and Senger, D.R. Specific reduction in osteopontin synthesis by antisense RNA inhibits the tumorigenicity of transformed Rat1 fibroblasts. Oncogene 9 (1994) 2321–2326.

    PubMed  CAS  Google Scholar 

  11. Denhardt, D. Osteopontin expression correlates with melanoma invasion. J. Invest. Dermatol. 124 (2005) 16–18.

    Article  Google Scholar 

  12. Wai, P.Y., Mi, Z., Guo, H., Sarraf-Yazdi, S., Gao, C., Wei, J., Marroquin, C.E., Clary, B. and Kuo, P.C. Osteopontin silencing by small interfering RNA suppresses in vitro and in vivo CT26 murine colon adenocarcinoma metastasis. Carcinogenesis 26 (2005) 741–751.

    Article  PubMed  CAS  Google Scholar 

  13. Wu, Y., Denhardt, D.T. and Rittling, S.R. Osteopontin is required for full expression of the transformed phenotype by the ras oncogene. Br. J. Cancer 83 (2000) 156–163.

    Article  PubMed  CAS  Google Scholar 

  14. Ek, E.T., Dass, C.R. and Choong, P.F. Commonly used mouse models of osteosarcoma. Crit. Rev. Oncol. Hematol. 60 (2006) 1–8.

    Article  PubMed  Google Scholar 

  15. Greene, F.L. AJCC Cancer Staging Manual. New York: Springer-Verlag, 2002.

    Google Scholar 

  16. Liu, S.J., Hu, G.F., Liu, Y.J., Liu, S.G., Gao, H., Zhang, C.S., Wei, Y.Y., Xue, Y. and Lao, W.D. The Effect of Human Osteopontin on the Proliferation. Transmigration and Expression of Matrix Metallproteinase-2 and 9 of Osteosarcoma Cells in vitro. Chin. Med. J. (Engl.) 117 (2004) 235–240.

    CAS  Google Scholar 

  17. Liu, S.G., Wei, Y.Y., Hu, G.F., Gao, H., Liu, S.J. and Lao, W.D. An expression profile of human α-lactalbumin in the milk of transgenic mouse. Science In. Chin, Series C-Life Sciences 47 (2004) 197–202.

    Article  CAS  Google Scholar 

  18. Porchet, N. and Aubert, J.P. Northern blot analysis of large mRNAs. Methods Mol. Biol. 125 (2000) 305–312.

    PubMed  CAS  Google Scholar 

  19. Cioffi, C.L., Garay, M., Johnston, J.F., McGraw, K., Boggs, R.T., Hreniuk, D. and Monia, B.P. Selective inhibition of A-Raf and C-Raf mRNA expression by antisense oligodeoxynucleotides in rat vascular smooth muscle cells: role of A-Raf and C-Raf in serum-induced proliferation. Mol. Pharmacol. 51 (1997) 383–389.

    PubMed  CAS  Google Scholar 

  20. Li, F. and Altieri, D.C. The cancer antiapoptosis mouse survivin gene: characterization of locus and transcriptional requirements of basal and cell cycle-dependent expression. Cancer Res. 59 (1999) 3143–3151.

    PubMed  CAS  Google Scholar 

  21. Ru, K., Schmitt, S., James, W.I. and Wang, J.H. Growth inhibition and antimetastatic effect of antisense poly-DNP-RNA on human breast cancer cells. Oncol. Res. 11 (1999) 505–512.

    PubMed  CAS  Google Scholar 

  22. Ulanova, M., Schreiber, A.D. and Befus, A.D. The future of antisense oligonucleotides in the treatment of respiratory diseases. BioDrugs 20 (2006) 1–11.

    Article  PubMed  CAS  Google Scholar 

  23. Reed, J.C., Cuddy, M., Haldar, S., Croce, C., Nowell, P., Makover, D. and Bradley, K. BCL2-mediated tumorigenicity of a human T-lymphoid cell line: synergy with MYC and inhibition by BCL2 antisense. Proc. Natl. Acad. Sci. USA 87 (1990) 3660–3664.

    Article  PubMed  CAS  Google Scholar 

  24. Zhang, X., Chen, Z., Chen, Y. and Tong, T. Delivering antisense telomerase RNA by a hybrid adenovirus/ adeno-associated virus significantly suppresses the malignant phenotype and enhances cell apoptosis of human breast cancer cells. Oncogene 22 (2003) 2405–2416.

    Article  PubMed  CAS  Google Scholar 

  25. Scotlandi, K., Avnet, S., Benini, S., Manara, M.C., Serra, M., Cerisano, V., Perdichizzi, S., Lollini, P.L., De Giovanni, C., Landuzzi, L. and Picci, P. Expression of an IGF-I receptor dominant negative mutant induces apoptosis, inhibits tumorigenesis and enhances chemosensitivity in Ewing’s sarcoma cells. Int. J. Cancer 101 (2002) 11–16.

    Article  PubMed  CAS  Google Scholar 

  26. Resnicoff, M., Sell, C., Rubini, M., Coppola, D., Ambrose, D., Baserga, R. and Rubin, R. Rat glioblastoma cells expressing an antisense RNA to the insulin-like growth factor-1 (IGF-1) receptor are nontumorigenic and induce regression of wild-type tumors. Cancer Res. 54 (1994) 2218–2222.

    PubMed  CAS  Google Scholar 

  27. Oku, T., Tjuvajev, J.G., Miyagawa, T., Sasajima, T., Joshi, A., Joshi, R., Finn, R., Claffey, K.P. and Blasberg, R.G. Tumor growth modulation by sense and antisense vascular endothelial growth factor gene expression: effects on angiogenesis, vascular permeability, blood volume, blood flow, fluorodeoxyglucose uptake, and proliferation of human melanoma intracerebral xenografts. Cancer Res. 58 (1998) 4185–4192.

    PubMed  CAS  Google Scholar 

  28. Belletti, B., Ferraro, P., Arra, C., Baldassarre, G., Bruni, P., Staibano, S., De Rosa, G., Salvatore, G., Fusco, A., Persico, M.G. and Viglietto, G. Modulation of in vivo growth of thyroid tumor-derived cell lines by sense and antisense vascular endothelial growth factor gene. Oncogene 18 (1999) 4860–4869.

    Article  PubMed  CAS  Google Scholar 

  29. He, Y., Zeng, Q., Drenning, S.D., Melhem, M.F., Tweardy, D.J., Huang, L. and Grandis, J.R. Inhibition of human squamous cell carcinoma growth in vivo by epidermal growth factor receptor antisense RNA transcribed from the U6 promoter. J. Natl. Cancer Inst. 90 (1998) 1080–1087.

    Article  PubMed  CAS  Google Scholar 

  30. Huber, L.C., Distler, O., Gay, R.E. and Gay, S. Antisense strategies in degenerative joint diseases: sense or nonsense? Adv. Drug Deliv. Rev. 58 (2006) 285–299.

    Article  PubMed  CAS  Google Scholar 

  31. Friedrich, I., Shir, A., Klein, S. and Levitzki, A. RNA molecules as anticancer agents. Semin. Cancer Biol. 14 (2004) 223–230.

    Article  PubMed  CAS  Google Scholar 

  32. Liu, S.J., Hu, G.F., Liu S.G. and Lao, W.D. Functional analysis of human osteopontin (hOPN) in cellular proliferation. High. Technol. Lett. 13 (2003) 25–28.

    Google Scholar 

  33. Gleave, M.E and Monia, B.P. Antisense therapy for cancer. Nat. Rev. Cancer 5 (2005) 468–479.

    Article  PubMed  CAS  Google Scholar 

  34. Folini, M. and Zaffaroni, N. Targeting telomerase by antisense-based approaches: perspectives for new anti-cancer therapies. Curr. Pharm. Des. 11 (2005) 1105–1117.

    Article  PubMed  CAS  Google Scholar 

  35. Benimetskaya, L. and Stein, C.A. Antisense therapy: recent advances and relevance to prostate cancer. Clin. Prostate Cancer 1 (2002) 20–30.

    PubMed  CAS  Google Scholar 

  36. Wacheck, V. and Zangemeister-Wittke, U. Antisense molecules for targeted cancer therapy. Crit. Rev. Oncol. Hematol. 59 (2006) 65–73.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Si-Jin Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, SJ., Zhang, DQ., Sui, XM. et al. The inhibition of in vivo tumorigenesis of osteosarcoma (OS)-732 cells by antisense human osteopontin RNA. Cell Mol Biol Lett 13, 11–19 (2008). https://doi.org/10.2478/s11658-007-0031-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-007-0031-0

Key words