Skip to main content

The effect of calnexin deletion on the expression level of PDI in Saccharomyces cerevisiae under heat stress conditions

Abstract

We cultured calnexin-disrupted and wild-type Saccharomyces cerevisiae strains under conditions of heat stress. The growth rate of the calnexin-disrupted yeast was almost the same as that of the wild-type yeast under those conditions. However, the induced mRNA level of the molecular chaperone PDI in the ER was clearly higher in calnexin-disrupted S. cerevisiae relative to the wild type at 37°C, despite being almost the same in the two strains under normal conditions. The western blotting analysis for PDI protein expression in the ER yielded results that show a parallel in their mRNA levels in the two strains. We suggest that PDI may interact with calnexin under heat stress conditions, and that the induction of PDI in the ER can recover part of the function of calnexin in calnexin-disrupted yeast, and result in the same growth rate as in wild-type yeast.

Abbreviations

ER:

endoplasmic reticulum

PAGE:

polyacrylamide gel electrophoresis

PDI:

protein disulfide isomerase

RT-PCR:

reverse transcriptase-polymerase chain reaction

UPR:

unfolding protein

References

  1. 1.

    Ou, W.J., Cameron, P.H., Thomas, D.Y. and Bergeron J.J.M. Association of folding intermediates of glycoproteins with calnexin during protein maturation. Nature 364 (1993) 771–776.

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Bergeron, J.J.M., Brenner, M.B., Thomas, D.Y. and Williams, D.B. Calnexin: a membrane-bound chaperone of the endoplasmic reticulum. Trends Biochem. Sci. 19 (1994) 124–128.

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Letourneur, O., Sechi, S., Willete-Brown, J., Robertson, M.W. and Kinet J.P. Glycosylation of human truncated Fc epsilon RI alpha chain is necessary for efficient folding in the endoplasmic reticulum. J. Biol. Chem. 270 (1995) 8249–8256.

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Degen, E., Cohen-Doyle, M.F. and Williams, D.B. Efficient dissociation of the p88 chaperone from major histocompatibility complex class I molecules requires both beta 2-microglobulin and peptide. J. Exp. Med. 175 (1992) 1653–1661.

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Hammond, C., Braakman, I. and Helenius, A. Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control. Proc. Natl. Acad. Sci. USA 91 (1994) 913–917.

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Jackson, M.R., Cohen-Doyle, M.F., Peterson, P, A. and Williams, D.B. Regulation of MHC class I transport by the molecular chaperone, calnexin (p88, IP90). Science 263 (1994) 384–387.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Ware, F.E., Vassilakos, A., Peterson, P.A., Jackson, M.R., Lehrman, M.A. and Williams, D.B. The molecular chaperone calnexin binds Glc1Man9GlcNAc2 oligosaccharide as an initial step in recognizing unfolded glycoproteins. J. Biol. Chem. 270 (1995) 4697–4704.

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Parlati, F., Dominguez, M., Bergeron, J.M. and Thomas, D.Y. Saccharomyces cerevisiae CNE1 encodes an endoplasmic reticulum (ER) membrane protein with sequence similarity to calnexin and calreticulin and functions as a constituent of the ER quality control apparatus. J. Biol. Chem. 270 (1995) 244–253.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Jakob, C.A., Burda, P. S., te Heesen, S., Aebi, M. and Roth, J. Genetic tailoring of N-linked oligosaccharides: the role of glucose residues in glycoprotein processing of Saccharomyces cerevisiae in vivo. Glycobiology 8 (1998) 155–164.

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Mori, K., Ogawa, N., Kawahara, T., Yanagi, H. and Yura, T. Palindrome with spacer of one nucleotide is characteristic of the cis-acting unfolded protein response element in Saccharomyces cerevisiae. J. Biol. Chem. 273 (1998) 9912–9920.

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Song, Y., Sata, J., Saito, A., Usui, M., Azakami, H. and Akio, K. Effects of calnexin deletion in Saccharomyces cerevisiae on the secretion of glycosylated lysozymes. J. Biochem. 130 (2001) 757–764.

    PubMed  CAS  Google Scholar 

  12. 12.

    Gething, M.J. and Sambrook, J. Protein folding in the cell. Nature 355 (1992) 33–45.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Helenius, A., Tatu, U., Marquardt, T. and Braakman, I. Protein folding in the endoplasmic reticulum. In: Cell Biology and Biotechnology (Rupp, R.G. and Oka, M.S.), Berlin/Heidelberg, Springer Verlag, 1992.

    Google Scholar 

  14. 14.

    Lee, A.S. Coordinated regulation of a set of genes by glucose and calcium ionophores in mammalian cells. Trends Biochem. Sci. 12 (1987) 20–23.

    Article  CAS  Google Scholar 

  15. 15.

    Kozutsumi, Y., Segal, M., Normington, K., Gething, M.J. and Sambrook, J. The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature 332 (1988) 462–464.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Molinari, M. and Helenius, A. Chaperone selection during glycoprotein translocation into the endoplasmic reticulum. Science 288 (2000) 331–333.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Pirneskoski, A., Ruddock, L.W., Klappa, P., Freedman, R.B., Kivirikko, K.I. and Koivunen, P. Domains b’ and a’ of protein disulfide isomerase fulfill the minimum requirement for function as a subunit of prolyl 4-hydroxylase. J. Biol. Chem. 276 (2001) 11287–11293.

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Williams, D.B. Beyond lectins: the calnexin/calreticulin chaperone system of the endoplasmic reticulum. J. Cell. Sci. 119 (2006) 615–623.

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Parlatill, F., Dignard, D., Bergeron, J.J.M. and Thomas, D.Y. The calnexin homologue cnx1+ in Schizosaccharomyces pombe, is an essential gene which can be complemented by its soluble ER domain. EMBO J. 14 (1995) 3064–3072.

    Google Scholar 

  20. 20.

    Siebert, P.D. and Larrick, J.W. Competitive PCR. Nature 359 (1992) 557–558.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Rose, M.D., Misra, L.M. and Vogel, J.P. KAR2, a karyogamy gene, is the yeast homolog of the mammalian BiP/GRP78 gene. Cell 57 (1989) 1211–1221.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Lamantia, M., Miura, T., Tachikawa, H., Kaplan, H.A., Lennarz, W.J. and Mizunaga, T. Glycosylation site binding protein and protein disulfide isomerase are identical and essential for cell viability in yeast. Proc. Natl. Acad. Sci. USA 88 (1991) 4453–4457.

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Arima, H., Kinoshita, T., Ibrahim H.R., Azakami, H. and Kato, A. Enhanced secretion of hydrophobic peptide fused lysozyme by the introduction of N-glycosylation signal and the disruption of calnexin gene in Saccharomyces cerevisiae. FEBS Lett. 440 (1998) 89–92.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Kimura, T., Hosoda, Y. and Nakamura, H. Functional differences between human and yeast protein disulfide isomerase family proteins. Biochem. Biophys. Res. Commun. 320 (2004) 359–365.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Mori, K., Ogawa, N., Kawahara, T., Yanagi, H. and Yura, T. Palindrome with spacer of one nucleotide is characteristic of the cis-acting unfolded protein response element in Saccharomyces cerevisiae. J. Biol. Chem. 273 (1998) 9912–9920.

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Kimura, T., Hosoda, Y., Sato, Y., Kitamura, Y., Ikeda, T., Horibe, T. and Kikuc, M. Interactions among yeast protein-disulfide isomerase proteins and endoplasmic reticulum chaperone proteins influence their activities. J. Biol. Chem. 280 (2005) 31438–31441.

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Lee, W., Kim, K.R., Singaravelu, G., Park, B.J., Kim, D.H., Ahnn, J. and Yoo, Y.J. Alternative chaperone machinery may compensate for calreticulin/calnexin deficiency in Caenorhabditis elegans. Proteomics 6 (2006) 1329–1339.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Youtao Song.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhang, H., He, J., Ji, Y. et al. The effect of calnexin deletion on the expression level of PDI in Saccharomyces cerevisiae under heat stress conditions. Cell Mol Biol Lett 13, 38–48 (2008). https://doi.org/10.2478/s11658-007-0033-y

Download citation

Key words

  • Calnexin
  • Molecular chaperone
  • PDI
  • Heat stress