Skip to main content

The stage-specific function of gap junctions during tumourigenesis

Abstract

Tumour development is a process resulting from the disturbance of various cellular functions including cell proliferation, adhesion and motility. While the role of these cell parameters in tumour promotion and progression has been widely recognized, the mechanisms that influence gap junctional coupling during tumorigenesis remain elusive. Neoplastic cells usually display decreased levels of connexin expression and/or gap junctional coupling. Thus, impaired intercellular communication via gap junctions may facilitate the release of a potentially neoplastic cell from the controlling regime of the surrounding tissue, leading to tumour promotion. However, recent data indicates that metastatic tumour cell lines are often characterized by relatively high levels of connexin expression and gap junctional coupling. This review outlines current knowledge on the role of connexins in tumorigenesis and the possible mechanisms of the interference of gap junctional coupling with the processes of tumour invasion and metastasis.

Abbreviations

Cx:

connexin

FACS:

fluorescence-activated cell sorting

References

  1. 1.

    Sohl, G. and Willecke, K. Gap junctions and the connexin protein family. Cardiovasc. Res. 62 (2004) 228–232.

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Niessen, H., Harz, H., Bedner, P., Kramer, K. and Willecke, K. Selective permeability of different connexin channels to the second messenger inositol 1,4,5-trisphosphate. J. Cell Sci. 113 (2000) 1365–1372.

    PubMed  CAS  Google Scholar 

  3. 3.

    Plum, A., Hallas, G., Magin, T., Dombrowski, F., Hagendorff, A., Schumacher, B., Wolpert, C., Kim, J., Lamers, W.H., Evert, M., Meda, P., Traub, O. and Willecke, K. Unique and shared functions of different connexins in mice. Curr. Biol. 10 (2000) 1083–1091.

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Bedner, P., Niessen, H., Odermatt, B., Kretz, M., Willecke, K. and Harz, H. Selective permeability of different connexin channels to the second messenger cyclic AMP. J. Biol. Chem. 281 (2006) 6673–6681.

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Sohl, G., Maxeiner, S. and Willecke, K. Expression and functions of neuronal gap junctions. Nat. Rev. Neurosci. 6 (2005) 191–200.

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Alexander, D.B. and Goldberg, G.S. Transfer of biologically important molecules between cells through gap junction channels. Curr. Med. Chem. 10 (2003) 2045–2058.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    White, T.W. and Paul, D.L. Genetic diseases and gene knockouts reveal diverse connexin functions. Annu. Rev. Physiol. 61 (1999) 283–310.

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Laird, D.W. Life cycle of connexins in health and disease. Biochem. J. 394 (2006) 527–543.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Wei, C.J., Xu, X. and Lo, C.W. Connexins and Cell Signaling in Development and Disease. Annu. Rev. Cell Dev. Biol. 20 (2004) 811–838.

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Nelles, E., Butzler, C., Jung, D., Temme, A., Gabriel, H.D., Dahl, U., Traub, O., Stumpel, F., Jungermann, K., Zielasek, J., Toyka, K.V., Dermietzel, R. and Willecke, K. Defective propagation of signals generated by sympathetic nerve stimulation in the liver of connexin32-deficient mice. Proc. Natl. Acad. Sci. USA 93 (1996) 9565–9570.

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Oyamada, M., Oyamada, Y. and Takamatsu, T. Regulation of connexin expression. Biochim. Biophys. Acta 1719 (2005) 6–23.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Peracchia, C. Chemical gating of gap junction channels; roles of calcium, pH and calmodulin. Biochim. Biophys. Acta 1662 (2004) 61–80.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Luebeck, E.G., Buchmann, A., Schneider, D., Moolgavkar, S.H. and Schwarz, M. Modulation of liver tumorigenesis in Connexin32-deficient mouse. Mutat. Res. 570 (2005) 33–47.

    PubMed  CAS  Google Scholar 

  14. 14.

    Naus, C.C., Bechberger, J.F., Caveney, S. and Wilson, J.X. Expression of gap junction genes in astrocytes and C6 glioma cells. Neurosci. Lett. 126 (1991) 33–36.

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Jamieson, S., Going, J.J., D’Arcy, R. and George, W.D. Expression of gap junction proteins connexin 26 and connexin 43 in normal human breast and in breast tumours. J. Pathol. 184 (1998) 37–43.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Yamasaki, H., Krutovskikh, V., Mesnil, M., Tanaka, T., Zaidan-Dagli, M.L. and Omori, Y. Role of connexin (gap junction) genes in cell growth control and carcinogenesis. C. R. Acad. Sci. III 322 (1999) 151–159.

    PubMed  CAS  Google Scholar 

  17. 17.

    Saunders, M.M., Seraj, M.J., Li, Z., Zhou, Z., Winter, C.R., Welch, D.R. and Donahue, H.J. Breast cancer metastatic potential correlates with a breakdown in homospecific and heterospecific gap junctional intercellular communication. Cancer Res. 61 (2001) 1765–1767.

    PubMed  CAS  Google Scholar 

  18. 18.

    Zhu, D., Caveney, S., Kidder, G.M. and Naus, C.C. Transfection of C6 glioma cells with connexin 43 cDNA: analysis of expression, intercellular coupling, and cell proliferation. Proc. Natl. Acad. Sci. USA 88 (1991) 1883–1887.

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Hirschi, K.K., Xu, C.E., Tsukamoto, T. and Sager, R. Gap junction genes Cx26 and Cx43 individually suppress the cancer phenotype of human mammary carcinoma cells and restore differentiation potential. Cell Growth Differ. 7 (1996) 861–870.

    PubMed  CAS  Google Scholar 

  20. 20.

    Yamasaki, H., Omori, Y., Zaidan-Dagli, M.L., Mironov, N., Mesnil, M. and Krutovskikh, V. Genetic and epigenetic changes of intercellular communication genes during multistage carcinogenesis. Cancer Detect. Prev. 23 (1999) 273–279.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Goldberg, G.S., Bechberger, J.F., Tajima, Y., Merritt, M., Omori, Y., Gawinowicz, M.A., Narayanan, R., Tan, Y., Sanai, Y., Yamasaki, H., Naus, C.C., Tsuda, H. and Nicholson, B.J. Connexin43 suppresses MFG-E8 while inducing contact growth inhibition of glioma cells. Cancer Res. 60 (2000) 6018–6026.

    PubMed  CAS  Google Scholar 

  22. 22.

    Chen, S.C., Pelletier, D.B., Ao, P. and Boynton, A.L. Connexin43 reverses the phenotype of transformed cells and alters their expression of cyclin/cyclin-dependent kinases. Cell Growth Differ. 6 (1995) 681–690.

    PubMed  CAS  Google Scholar 

  23. 23.

    Fujimoto, E., Satoh, H., Negishi, E., Ueno, K., Nagashima, Y., Hagiwara, K., Yamasaki, H. and Yano, T. Negative growth control of renal cell carcinoma cell by connexin 32: possible involvement of Her-2. Mol. Carcinog. 40 (2004) 135–142.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Loewenstein, W.R. and Rose, B. The cell-cell channel in the control of growth. Semin. Cell Biol. 3 (1992) 59–79.

    PubMed  CAS  Article  Google Scholar 

  25. 25.

    Rose, B., Mehta, P.P. and Loewenstein, W.R. Gap-junction protein gene suppresses tumorigenicity. Carcinogenesis 14 (1993) 1073–1075.

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Moorby, C. and Patel, M. Dual functions for connexins: Cx43 regulates growth independently of gap junction formation. Exp. Cell Res. 271 (2001) 238–248.

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Lesueur, F., Mesnil, M., Delouvee, A., Girault, J. M., Yamasaki, H., Thiery, J.P. and Jouanneau, J. NBT-II carcinoma behaviour is not dependent on cell-cell communication through gap junctions. Biochem. Biophys. Res. Commun. 294 (2002) 108–115.

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Qin, H., Shao, Q., Curtis, H., Galipeau, J., Belliveau, D.J., Wang, T., Alaoui-Jamali, M.A. and Laird, D.W. Retroviral delivery of connexin genes to human breast tumor cells inhibits in vivo tumor growth by a mechanism that is independent of significant gap junctional intercellular communication. J. Biol. Chem. 277 (2002) 29132–29138.

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Alexander, D.B., Ichikawa, H., Bechberger, J.F., Valiunas, V., Ohki, M., Naus, C. C., Kunimoto, T., Tsuda, H., Miller, W.T. and Goldberg, G.S. Normal cells control the growth of neighboring transformed cells independent of gap junctional communication and SRC activity. Cancer Res. 64 (2004) 1347–1358.

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Zhang, Y.W., Kaneda, M. and Morita, I. The gap junction-independent tumor-suppressing effect of connexin 43. J. Biol. Chem. 278 (2003) 44852–44856.

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Zhang, Y. W., Nakayama, K., Nakayama, K. and Morita, I. A novel route for connexin 43 to inhibit cell proliferation: negative regulation of S-phase kinase-associated protein (Skp 2). Cancer Res. 63 (2003) 1623–1630.

    PubMed  CAS  Google Scholar 

  32. 32.

    Dang, X., Jeyaraman, M. and Kardami, E. Regulation of connexin-43-mediated growth inhibition by a phosphorylatable amino-acid is independent of gap junction-forming ability. Mol. Cell Biochem. 289 (2006) 201–207.

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Chambers, A.F. The metastatic process: basic research and clinical implications. Oncol. Res. 11 (1999) 161–168.

    PubMed  CAS  Google Scholar 

  34. 34.

    Guo, W. and Giancotti, F.G. Integrin signalling during tumour progression. Nat. Rev. Mol. Cell Biol. 5 (2004) 816–826.

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Kanczuga-Koda, L., Sulkowski, S., Lenczewski, A., Koda, M., Wincewicz, A., Baltaziak, M. and Sulkowska, M. Increased expression of connexins 26 and 43 in lymph node metastases of breast cancer. J. Clin. Pathol. 59 (2006) 429–433.

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Kamibayashi, Y., Oyamada, Y., Mori, M. and Oyamada, M. Aberrant expression of gap junction proteins (connexins) is associated with tumor progression during multistage mouse skin carcinogenesis in vivo. Carcinogenesis 16 (1995) 1287–1297.

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Miekus, K., Czernik, M., Sroka, J., Czyz, J. and Madeja, Z. Contact stimulation of prostate cancer cell migration: the role of gap junctional coupling and migration stimulated by heterotypic cell-to-cell contacts in determination of the metastatic phenotype of Dunning rat prostate cancer cells. Biol. Cell 97 (2005) 893–903.

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Tate, A.W., Lung, T., Radhakrishnan, A., Lim, S.D., Lin, X. and Edlund, M. Changes in gap junctional connexin isoforms during prostate cancer progression. Prostate 66 (2006) 19–31.

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Zhang, W., Nwagwu, C., Le, D.M., Yong, V.W., Song, H. and Couldwell, W.T. Increased invasive capacity of connexin43-overexpressing malignant glioma cells. J. Neurosurg. 99 (2003) 1039–1046.

    PubMed  CAS  Article  Google Scholar 

  40. 40.

    El Sabban, M.E. and Pauli, B.U. Cytoplasmic dye transfer between metastatic tumor cells and vascular endothelium. J. Cell Biol. 115 (1991) 1375–1382.

    PubMed  Article  Google Scholar 

  41. 41.

    Ito, A., Katoh, F., Kataoka, T.R., Okada, M., Tsubota, N., Asada, H., Yoshikawa, K., Maeda, S., Kitamura, Y., Yamasaki, H. and Nojima, H. A role for heterologous gap junctions between melanoma and endothelial cells in metastasis. J. Clin. Invest. 105 (2000) 1189–1197.

    PubMed  CAS  Article  Google Scholar 

  42. 42.

    Graeber, S.H. and Hulser, D.F. Connexin transfection induces invasive properties in HeLa cells. Exp. Cell Res. 243 (1998) 142–149.

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Czyz, J., Irmer, U., Zappe, C., Mauz, M. and Hulser, D.F. Hierarchy of carcinoma cell responses to apigenin: gap junctional coupling versus proliferation. Oncol. Rep. 11 (2004) 739–744.

    PubMed  CAS  Google Scholar 

  44. 44.

    Czyz, J., Madeja, Z., Irmer, U., Korohoda, W. and Hulser, D. F. Flavonoid apigenin inhibits motility and invasiveness of carcinoma cells in vitro. Int. J. Cancer 114 (2005) 12–18.

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Traub, O., Eckert, R., Lichtenberg-Frate, H., Elfgang, C., Bastide, B., Scheidtmann, K.H., Hulser, D.F. and Willecke, K. Immunochemical and electrophysiological characterization of murine connexin40 and-43 in mouse tissues and transfected human cells. Eur. J. Cell Biol. 64 (1994) 101–112.

    PubMed  CAS  Google Scholar 

  46. 46.

    Koffler, L., Roshong, S., Kyu, P.I, Cesen-Cummings, K., Thompson, D.C., Dwyer-Nield, L.D., Rice, P., Mamay, C., Malkinson, A.M. and Ruch, R.J. Growth inhibition in G(1) and altered expression of cyclin D1 and p27(kip-1) after forced connexin expression in lung and liver carcinoma cells. J. Cell Biochem. 79 (2000) 347–354.

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    Madeja, Z., Szymkiewicz, I., Zaczek, A., Sroka, J., Miekus, K. and Korohoda, W. Contact-activated migration of melanoma B16 and sarcoma XC cells. Biochem. Cell Biol. 79 (2001) 425–440.

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Sroka, J., Kaminski, R., Michalik, M., Madeja, Z., Przestalski, S. and Korohoda, W. The effect of triethyllead on the motile activity of walker 256 carcinosarcoma cells. Cell. Mol. Biol. Lett. 9 (2004) 15–30.

    PubMed  CAS  Google Scholar 

  49. 49.

    Czyz, J., Irmer, U., Schulz, G., Mindermann, A. and Hulser, D.F. Gap-junctional coupling measured by flow cytometry. Exp. Cell Res. 255 (2000) 40–46.

    PubMed  Article  CAS  Google Scholar 

  50. 50.

    Madeja, Z., Miekus, K., Sroka, J., Djamgoz, M.B. and Korohoda, W. Homotypic cell-cell contacts stimulate the motile activity of rat prostate cancer cells. BJU Int. 88 (2001) 776–786.

    PubMed  Article  CAS  Google Scholar 

  51. 51.

    Eugenin, E.A., Branes, M.C., Berman, J.W. and Saez, J.C. TNF-alpha plus IFN-gamma induce connexin43 expression and formation of gap junctions between human monocytes/macrophages that enhance physiological responses. J. Immunol. 170 (2003) 1320–1328.

    PubMed  CAS  Google Scholar 

  52. 52.

    Van Rijen, H.V., van Kempen, M.J., Postma, S. and Jongsma, H.J. Tumour necrosis factor alpha alters the expression of connexin43, connexin40, and connexin37 in human umbilical vein endothelial cells. Cytokine 10 (1998) 258–264.

    PubMed  Article  Google Scholar 

  53. 53.

    Van Kempen, M.J. and Jongsma, H.J. Distribution of connexin37, connexin40 and connexin43 in the aorta and coronary artery of several mammals. Histochem. Cell Biol. 112 (1999) 479–486.

    PubMed  Article  Google Scholar 

  54. 54.

    Kwak, B.R., Mulhaupt, F., Veillard, N., Gros, D.B. and Mach, F. Altered pattern of vascular connexin expression in atherosclerotic plaques. Arterioscler. Thromb. Vasc. Biol. 22 (2002) 225–230.

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    Lewalle, J.M., Cataldo, D., Bajou, K., Lambert, C.A. and Foidart, J.M. Endothelial cell intracellular Ca2+ concentration is increased upon breast tumor cell contact and mediates tumor cell transendothelial migration. Clin. Exp. Metastasis 16 (1998) 21–29.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jarosław Czyż.

Additional information

Paper authored by participants of the international conference: XXXIV Winter School of the Faculty of Biochemistry, Biophysics and Biotechnology of Jagiellonian University, Zakopane, March 7–11, 2007, “The Cell and Its Environment”. Publication costs were covered by the organisers of this meeting.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Czyż, J. The stage-specific function of gap junctions during tumourigenesis. Cell Mol Biol Lett 13, 92–102 (2008). https://doi.org/10.2478/s11658-007-0039-5

Download citation

Key words

  • Gap junctions
  • Connexin
  • Tumour
  • Neoplasia
  • Metastasis