Skip to main content

Acidification induces Bax translocation to the mitochondria and promotes ultraviolet light-induced apoptosis

Abstract

It has been suggested that Bax translocation to the mitochondria is related to apoptosis, and that cytosol acidification contributes to apoptosis events. However, the mechanisms remain obscure. We investigated the effect of acidification on Bax translocation and on ultraviolet (UV) light-induced apoptosis. The Bax translocation assay in vitro showed that Bax translocated to the mitochondria at pH 6.5, whereas no Bax translocation was observed at pH 7.4. VHDBB cells expressing the GFP-Bax fusion protein were treated for 12 h with a pH 6.5 DMEM medium, nigericin (5 μg/ml) and UV light (50 J/cm2), separately or in combination, and Bax translocation to the mitochondria was determined by SDS-PAGE and Western blot, and apoptotic cell death was detected by flow cytometry. The results showed that some of the Bax translocated to the mitochondria in the cells treated with the normal medium, nigericin and UV in combination, whereas all of the Bax translocated to the mitochondria in the cells treated with the pH 6.5 medium, nigericin and UV in combination. In VHDBB cells treated for 12 h with nigericin, UV alone, and UV and nigericin in combination, the respective rates of apoptotic cell death were 25.08%, 33.25% and 52.88%. In cells treated with pH 6.5 medium and nigericin, pH 6.5 medium and UV, and pH 6.5 medium, nigericin and UV in combination, the respective rates of apoptotic cell death increased to 37.19%, 41.42% and 89.44%. Our results indicated that acidification induces Bax translocation from the cytosol to the mitochondria, and promotes UV lightmediated apoptosis. This suggests that there is a possibility of improving cancer treatment by combining acidification with irradiation or chemotherapeutic drugs.

Abbreviations

Cyto:

cytosol

Mito:

mitochondria

Nig:

nigericin

UV:

ultraviolet

References

  1. 1.

    Adams, J.M. and Cory, S. Life-or-death decisions by the Bcl-2 protein family. Trends Biochem. Sci. 26 (2001) 61–66.

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Cory, S. and Adams, J.M. The Bcl2 family: Regulators of the cellular life-ordeath switch. Nat. Rev. 2 (2002) 647–656.

    CAS  Article  Google Scholar 

  3. 3.

    Huang, D. and Strasser, A. BH3-only proteins-essential initiators of apoptotic cell death. Cell 103 (2000) 839–842.

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Wolter, K.G., Hsu, Y.T., Smith, C.L., Nechushtan, A. and Xi, X.G. Movement of bax from the cytosol to mitochondria during apoptosis. J. Cell Biol. 139 (1997) 1281–1292.

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Hsu, Y.T., Wolter, K.G. and Youle, R.J. Cytosol to-membrane redistribution of bax and bcl-xl during apoptosis. Proc. Natl. Acad. Sci. USA 94 (1997) 3668–3672.

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Dejean, L.M., Martinez-Caballero, S., Guo, L., Hughes, C., Teijido, O., Ducret, T., Ichas, F., Korsmeyer, S.J., Antonsson, B., Jonas, E.A. and Kinnally, K.W. Oligomeric Bax is a component of the putative cytochrome c release channel MAC, mitochondrial apoptosis-induced channel. Mol. Biol. Cell 16 (2005) 2424–2432.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Hsu, Y.T. and Youle, R.J. Nonionic detergents induce dimerization among members of the bcl-2 family. J. Biol. Chem. 272 (1997) 13829–13834.

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Smaili, S.S., Hsu, Y.T., Sanders, K.M., Russell, J.T. and Youle, R.J. Bax translication to mitochondria subsequent to rapid loss of mitochondrial membrane potential. Cell Death Differ. 8 (2001) 909–920.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Antonsson, B., Montessuit, S., Sanchez, B. and Martinou, J.C. Bax is presents as a high molecular weight oligomer/complex in the mitochondrial membrane of apoptotic cells. J. Biol. Chem. 276 (2001) 1615–1623.

    Article  Google Scholar 

  10. 10.

    Dubrez, L, Coll, J.L., Hurbin, A., Solary, E. and Favrot M.C. Caffeine sensitizes human H358 cell line to p53-mediated apoptosis by inducing mitochondrial translocation and conformational change of BAX protein. J. Biol. Chem. 276 (2001)38980–38987.

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Gottlieb, R.A., Nordberg, J., Skowronski, E. and Babior, B.M. Apoptosis induced in Jurkat cells by several agents is preceded by intracellular acidification. Proc. Natl. Acad. Sci. USA 93 (1996) 654–658.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Sala, P.P., Escobar, D.C. and Mollinedo, F. Intracellular alkalinization suppresses lovastation-induced apoptosis in HL-60 cells through the inactivation of a pH-dependent endonuclease. J. Biol. Chem. 270 (1995) 6235–6242.

    Article  Google Scholar 

  13. 13.

    Barriere, H., Poujeol, C., Tauc, M. and Blasi, J.M. CFTR modulates programmed cell death by decreasing intracellular pH in Chinese hamaster lung fibroblasts. Am. J. Physiol. Cell Physiol. 281 (2001)C810–824.

    PubMed  CAS  Google Scholar 

  14. 14.

    Barry, M.A., Reynolds, J.E. and Eastman, A. Etoposide-induced apoptosis in human HL-60 cells is associated with intracellular acidification. Cancer Res. 53 (10 Suppl.) (1993) 2349–2357.

    PubMed  CAS  Google Scholar 

  15. 15.

    Goossens, J.F., Henichart, J.P., Dassonneville, L., Facompre, M. and Bailly, C. Relation between intracellular acidification and camptothecin-induced apoptosis in leukemia cells. Eur. J. Pharm. Sci. 10 (2000) 125–131.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Angoli, D., Delia, D. and Wanke, E. Early cytoplasmic acidification in retinamide-mediatewd apoptosis of human promyelocytic leukemia cells. Biochem. Biophys. Res. Commun. 229 (1996) 681–685.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Famulski, K.S., Macdonald, D., Paterson, M.C. and Sikora, E. Activation of a low pH-dependent unclease by apoptotic agents. Cell Death Differ. 6 (1999) 281–289.

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Segal, M.S. and Beem, E. Effect of pH, ionic charge, and osmolality on cytochrome c-mediated caspase-3 activity. Am. J. Physiol. Cell Physiol. 281 (2001) C1196–1204.

    PubMed  CAS  Google Scholar 

  19. 19.

    Furlong, I.J., Ascaso, R., Rivas, A.L. and Collins, M.K. Intracellular acidification induces apoptosis by stimulating ICE-like protease. J. Cell Sci. 110 (1997) 653–661.

    PubMed  CAS  Google Scholar 

  20. 20.

    Williams, A.C., Collard, T.J. and Paraskeva, C. An acidic environment leads to p53 dependent induction of apoptosis in human adenoma and carcinoma cell lines: implications for clonal selection during colorectal carcinogenesis. Oncogene 18 (1999) 3199–3204.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Collins, M.K., Furlong, I.J., Malde, P., Ascaso, R. and Oliver, J. An apoptotic endonuclease activated either by decreasing pH or by increasing calcium. J. Cell Sci. 109 (1996) 2393–2399.

    PubMed  CAS  Google Scholar 

  22. 22.

    Juin, P., Hueber, A.O., Littlewood, T. and Evan, G. c-Myc-induced sensitization to apoptosis is mediated through cytochrome c release. Genes Dev. 13 (1999) 1367–1381.

    PubMed  CAS  Google Scholar 

  23. 23.

    Jia, L., Macey, M.G., Yin, Y., Newland, A.C. and Kelsev, S.M. Subcellular distribution and redistribution of Bcl-2 family proteins in human leukemia cells and undergoing apoptosis. Blood 93 (1999) 2353–2359.

    PubMed  CAS  Google Scholar 

  24. 24.

    Haq, R. and Zanke, B. Inhibition of apoptotic signaling pathways in cancer cells as a mechanism of chemotherapy resistance. Cancer Metastasis Rev. 17 (1998) 233–239.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Yamagata, M. and Tannock, I.F. The chronic administration of drugs that inhibit the regulation of intracellular pH: invitro and anti-tumour effects. Br. J. Cancer 73 (1996) 1328–1334.

    PubMed  CAS  Google Scholar 

  26. 26.

    Newell, K., Wood, P., Stratford, I. and Tannock, I. Effects of agents which inhibit the regulation of intracellular pH on murine solid tumour. Br. J. Cancer 66 (1992) 311–317.

    PubMed  CAS  Google Scholar 

  27. 27.

    Suzuki, M., Youle, R.J. and Tjandra, N. Structure of bax: co-regulation of dimmer formation and intracellular localization. Cell 103 (2000) 645–654.

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Cartron, P.F., Moreau, C., Oliver, L., Mayat, E., Meflah, K. and Vallette, F.M. Involvement of the N-terminus of bax in its intracellular l ocalization and function. FEBS Lett. 512 (2002) 95–100.

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Gross, A., Jockel, J., Wei, M.C. and Korsmeyer, S.J. Enforced dimerization of bax results its translocation, mitochondrial dysfunction and apoptosis. EMBO J. 17 (1998) 3878–3885.

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Stubbs, M., McSheehy, P.M., Griffiths, J.R. and Bashford, C.L. Causes and consequences of tumor acidity and implications for treatment. Mol. Med. Today 6 (2000) 15–19.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lin Yang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yang, L., Mei, Y., Xie, Q. et al. Acidification induces Bax translocation to the mitochondria and promotes ultraviolet light-induced apoptosis. Cell Mol Biol Lett 13, 119–129 (2008). https://doi.org/10.2478/s11658-007-0042-x

Download citation

Key words

  • Acidification
  • Bax
  • Translocation
  • Ultraviolet light
  • Apoptosis
  • Cancer