Skip to main content

Syntaxin 8 has two functionally distinct di-leucine-based motifs

Abstract

Syntaxin 8 has been shown to form the SNARE complex with syntaxin 7, vti1b and endobrevin. These have been shown to function as the machinery for the homotypic fusion of late endosomes. Recently, we showed that syntaxins 7 and 8 cycle through the plasma membrane, and that the di-leucine-based motifs in the cytoplasmic domain of syntaxins 7 and 8 respectively function in their endocytic and exocytic processes. However, we could not elucidate the mechanism by which syntaxin 8 cycles through the plasma membrane. In this study, we constructed several different syntaxin 8 molecules by mutating putative di-leucine-based motifs, and analyzed their intracellular localization and trafficking. We found a di-leucine-based motif in the cytoplasmic domain of syntaxin 8. It is similar to that of syntaxin 7, and functions in its endocytosis. These results suggest that in the cytoplasmic domain, syntaxin 8 has two functionally distinct di-leucine-based motifs that act independently in its endocytic and exocytic processes. This is the first report on two di-leucine-based motifs in the same molecule acting independently in distinct transport pathways.

Abbreviations

HA:

hemagglutinin

NSF:

N-ethylmaleimide-sensitive factor

SNAP:

soluble NSF-attachment protein

SNARE:

SNAP-receptor

TGN:

trans-Golgi network

t-SNARE:

target-SNARE

v-SNARE:

vesicle-SNARE

vti1b:

Vps10p tail interactor 1b

References

  1. 1.

    Palade, G. Intracellular aspects of the process of protein synthesis. Science 189 (1975) 347–358.

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Pryer, N.K., Wuestehube, L.J. and Schekman, R. Vesicle-mediated protein sorting. Annu. Rev. Biochem. 61 (1992) 471–516.

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Rothman, J.E. and Warren, G. Implications of the SNARE hypothesis for intracellular membrane topology and dynamics. Curr. Biol. 4 (1994) 220–233.

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Rothman, J.E. and Wieland, F.T. Protein sorting by transport vesicles. Science 272 (1996) 227–234.

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Schekman, R. and Orci, L. Coat proteins and vesicle budding. Science 271 (1996) 1526–1533.

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Clary, D.O., Griff, I.C. and Rothman, J.E. SNAPs, a family of NSF attachment proteins involved in intracellular membrane fusion in animals and yeast. Cell 61 (1990) 709–721.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Graham, T.R. and Emr, S.D. Compartmental organization of Golgi-specific protein modification and vacuolar protein sorting events defined in a yeast sec18 (NSF) mutant. J. Cell Biol. 114 (1991) 207–218.

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Griff, I.C., Schekman, R., Rothman, J.E. and Kaiser, C.A. The yeast SEC17 gene product is functionally equivalent to mammalian alpha-SNAP protein. J. Biol. Chem. 267 (1992) 12106–12115.

    PubMed  CAS  Google Scholar 

  9. 9.

    Bennett, M.K. and Scheller, R.H. The molecular machinery for secretion is conserved from yeast to neurons. Proc. Natl. Acad. Sci. USA 90 (1993) 2559–2563.

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Söllner, T., Bennett, M.K., Whiteheart, S.W., Scheller, R.H. and Rothman, J.E. A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75 (1993) 409–418.

    PubMed  Article  Google Scholar 

  11. 11.

    Söllner, T., Whiteheart, S.W., Brunner, M., Erdjument-Bromage, H., Geromanos, S., Tempst, P. and Rothman, J.E. SNAP receptors implicated in vesicle targeting and fusion. Nature 362 (1993) 318–324.

    PubMed  Article  Google Scholar 

  12. 12.

    McNew, J.A., Parlati, F., Fukuda, R., Johnston, R.J., Paz, K., Paumet, F., Söllner, T.H. and Rothman, J.E. Compartmental specificity of cellular membrane fusion encoded in SNARE proteins. Nature 407 (2000) 153–159.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Parlati, F., McNew, J.A., Fukuda, R., Miller, R., Söllner, T.H. and Rothman, J.E. Topological restriction of SNARE-dependent membrane fusion. Nature 407 (2000) 194–198.

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Fukuda, R., McNew, J. A., Weber, T., Parlati, F., Engel, T., Nickel, W., Rothman, J.E. and Söllner, T.H. Functional architecture of an intracellular membrane t-SNARE. Nature 407 (2000) 198–202.

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Trowbridge, I.S., Collawn, J.F. and Hopkins, C.R. Signal-dependent membrane protein trafficking in the endocytic pathway. Annu. Rev. Cell Biol. 9 (1993) 129–161.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Sandoval, I.V. and Bakke, O. Targeting of membrane proteins to endosomes and lysosomes. Trends Cell Biol. 4 (1994) 292–297.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Letourner, F. and Klausner, R.D. A novel di-leucine motif and a tyrosinebased motif independently mediate lysosomal targeting and endocytosis of CD3 chains. Cell 69 (1992) 1143–1157.

    Article  Google Scholar 

  18. 18.

    Bremnes, B., Madsen, T., Gedde-Dahl, M. and Bakke, O. A LI and ML motif in the cytoplasmic tail of MHC-associated invariant chain mediate rapid internalization. J. Cell Sci. 107 (1994) 2021–2032.

    PubMed  CAS  Google Scholar 

  19. 19.

    Pond, L., Kuhn, L., Teyton, L., Schutze, M.P., Tainer, J.A., Jackson, M.R. and Peterson, P.A. A role for acidic residues in di-leucine motif-based targeting to the endocytic pathway. J. Biol. Chem. 270 (1995) 19989–19997.

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Simmen, T., Schmidt, A., Hunziker, W. and Beermann, F. The tyrosinase tail mediates sorting to the lysosomal compartment in MDCK cells via a dileucine and tyrosine-based signal. J. Cell Sci. 112 (1999) 45–53.

    PubMed  CAS  Google Scholar 

  21. 21.

    Li, Y., Marzolo, M.P., Van Kerkhof, P., Strous, G.J. and Bu, G. The YXXL motif, but not the two NPXY motifs, serves as the dominant endocytosis signal for low density lipoprotein receptor-related protein. J. Biol. Chem. 275 (2000) 17187–17194.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Johnson, K. and Kornfeld, S. The cytoplasmic tail of the mannose 6-phosphate/insulin-like growth factor-II receptor has two signals for lysosomal enzyme sorting in the Golgi. J. Cell Biol. 119 (1992) 249–257.

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Wong, S.H., Xu, Y., Zhang, T. and Hong, W. Syntaxin 7, a novel syntaxin member associated with the early endosomal compartment. J. Biol. Chem. 273 (1998) 375–380.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Nakamura, N., Yamamoto, A., Wada, Y. and Futai, M. Syntaxin 7 mediates endocytic trafficking to late endosomes. J. Biol. Chem. 275 (2000) 6523–6529.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Prekeris, R., Yang, B., Oorschot, V., Klumperman, J. and Scheller, R.H. Differential roles of syntaxin 7 and syntaxin 8 in endosomal trafficking. Mol. Biol. Cell 10 (1999) 3891–3908.

    PubMed  CAS  Google Scholar 

  26. 26.

    Subramaniam, V.N., Loh, E., Horstmann, H., Habermann, A., Xu, Y., Coe, J., Griffiths, G. and Hong, W. Preferential association of syntaxin 8 with the early endosome. J. Cell Sci. 113 (2000) 997–1008.

    PubMed  CAS  Google Scholar 

  27. 27.

    Antonin, W., Holroyd, C., Fasshauer, D., Pabst, S., Von Mollard, G.F. and Jahn, R. A SNARE complex mediating fusion of late endosomes defines conserved propaties of SNARE structure and function. EMBO J. 19 (2000) 6453–6464

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Kasai, K. and Akagawa, K. Roles of the cytoplasmic and transmembrane domains of syntaxins in intracellular localization and trafficking. J. Cell Sci. 114 (2001) 3115–3124.

    PubMed  CAS  Google Scholar 

  29. 29.

    Shin, H.W., Shinotsuka, C., Torii, S., Murakami, K. and Nakayama, K. Identification and subcellular localization of a novel mammalian dynamin-related protein homologous to yeast Vps1p and Dnm1p. J. Biochem. (Tokyo) 122 (1997) 525–530.

    CAS  Google Scholar 

  30. 30.

    Torii, S., Banno, T., Watanabe, T., Ikehara, Y., Murakami, K. and Nakayama, K. Cytotoxicity of brefeldin A correlates with its inhibitory effect on membrane binding of COP coat proteins. J. Biol. Chem. 270 (1995) 11574–11580.

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Thoreau, V., Bergès, T., Callebaut, I., Guillier-Gencik, Z., Gressin, L., Bernheim, A., Karst, F., Mornon, J.P., Kitzis, A. and Chomel, J.C. Molecular cloning, expression analysis, and chromosomal localization of human syntaxin 8 (STX8). Biochem. Biophys. Res. Commun. 257 (1999) 577–583.

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Hong, W. SNAREs and traffic. Biochim. Biophys. Acta 1744 (2005) 465–517.

    Article  CAS  Google Scholar 

  33. 33.

    Heilker, R., Manning-Krieg, U., Zuber, J.F. and Spiess, M. In vitro binding of clathrin adaptors to sorting signals correlates with endocytosis and basolateral sorting. EMBO J. 15 (1996) 2893–2899.

    PubMed  CAS  Google Scholar 

  34. 34.

    Darsow, T., Burd, C.G. and Emr, S.D. Acidic di-leucine motif essential for AP-3-dependent sorting and restriction of the functional specificity of the Vam3p vacuolar t-SNARE. J. Cell Biol. 142 (1998) 913–922.

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Höning, S., Sandoval, I.V. and Von Figura, K.A. Di-leucine-based motif in the cytoplasmic tail of LIMP-II and tyrosinase mediates selective binding of AP-3. EMBO J. 17 (1998) 1304–1314.

    PubMed  Article  Google Scholar 

  36. 36.

    Pearse, B.M. and Robinson, M.S. Clathrin, adaptors, and sorting. Annu. Rev. Cell Biol. 6 (1990) 151–171.

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Chao, D.S., Hay, J.C., Winnick, S., Prekeris, R., Klumperman, J. and Scheller, R.H. SNARE membrane trafficking dynamics in vivo. J. Cell Biol. 144 (1999) 869–881.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kimio Akagawa.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kasai, K., Suga, K., Izumi, T. et al. Syntaxin 8 has two functionally distinct di-leucine-based motifs. Cell Mol Biol Lett 13, 144–154 (2008). https://doi.org/10.2478/s11658-007-0043-9

Download citation

Key words

  • Syntaxin
  • Di-leucine-based motif
  • Endocytosis
  • Exocytosis