Skip to main content

Sclerotia of the acellular (true) slime mould Fuligo septica as a model to study melanization and anabiosis

Abstract

Acellular (true) slime moulds (Myxomycetes) are capable of a transition to the stage of sclerotium — a dormant form of plasmodium produced under unfavourable environmental conditions. In this study, sclerotia of Fuligo septica were analyzed by means of electron paramagnetic resonance (EPR) spectroscopy. The moulds were cultivated in vitro on filter paper, fed with oat flour, and kept until the plasmodia began to produce sclerotia. The obtained sclerotia differed in colour from yellow through orange to dark-brown. The EPR spectra revealed a free radical, melanin-like signal correlated with the depth of the colour; it was strongest in the dark sclerotia. Sclerotization only took place when the plasmodia were starved and very slowly dried. Only the yellow sclerotia were able to regenerate into viable plasmodia. This suggests that myxomycete cytoplasm dehydration is an active process regulated metabolically. Plasmodial sclerotization may therefore serve as a convenient model system to study the regulation of cytoplasmatic water balance, and sclerotia as a convenient material for EPR measurements, combining the quality of plasmodia with the technical simplicity of the measurements characteristic of dry spores. Darkening of the sclerotia is most probably a pathological phenomenon connected with the impairment of water balance during sclerotization.

Abbreviations

DOPA:

3,4-dihydroksyphenylalanine

DPPH:

1,1-diphenyl-2-picrylhydrazyl

EPR:

electron paramagnetic resonance

References

  1. 1.

    Stephenson, S.L. and Stempen, H. Myxomycetes. A Handbook of Slime Molds, 1st edition, Timber Press, Inc., Portland, Oregon, 1994 (paperback edition printed 2000).

    Google Scholar 

  2. 2.

    Towpik, J. Regulation of mitochondrial translation in yeast. Cell. Mol. Biol. Lett. 10 (2005) 571–594.

    PubMed  CAS  Google Scholar 

  3. 3.

    Rakoczy, L. [The acellular slime moulds (Myxomycetes) — a model system for the modern biology. in: Application of the In Vitro Cultures in Plant Physiology] (Dubert, F., Ed.), 1st edition, The Franciszek Górski Department of Plant Physiology, Polish Academy of Science, Kraków, Poland, 1995, 301–308.

    Google Scholar 

  4. 4.

    Płonka, P.M. and Rakoczy, L. Electron paramagnetic resonance spectroscopy (EPR) as a method for studying the biology of the acellular slime moulds (Myxomycetes). Acta Physiol. Plant., 19 suppl. (1997) 233.

    Google Scholar 

  5. 5.

    Płonka, P.M. and Rakoczy, L. [Usefulness of the EPR method in the research on slime moulds. in: Application of the In Vitro Cultures in Plant Physiology] (Dubert, F. and Skoczowski, A., Eds.), 1st edition, The Franciszek Górski Department of Plant Physiology, Polish Academy of Science, Kraków, Poland, 1997, 175–180.

    Google Scholar 

  6. 6.

    Rakoczy, L. and Panz, T. Melanin revealed in spores of true slime moulds using the electron paramagnetic resonance method. Acta Protozool. 33 (1994) 227–231.

    CAS  Google Scholar 

  7. 7.

    Loganathan, L. and Kalyanasundram, I. The melanin of the myxomycete Stemonitis herbatica. Acta Protozool. 38 (1999) 97–103.

    CAS  Google Scholar 

  8. 8.

    Sarna, T. and Lukiewicz, S. The double role of water in quantitative electron spin resonance (ESR) determinations on samples of biological materials. Folia Histochem. Cytochem. (Krakow) 9 (1971) 203–216.

    CAS  Google Scholar 

  9. 9.

    Płonka, P.M. and Rakoczy, L. [Heme and non-heme iron complexes of nitric oxide in the plasmodia of acellular slime moulds cultured in vitro]. Zesz. Probl. Post. N. Roln. 473 (2000) 249–259.

    Google Scholar 

  10. 10.

    Płonka, P.M. and Rakoczy, L. The electron paramagnetic resonance signals of the acellular slime mould Physarum nudum plasmodia irradiated with white light. Curr. Top. Biophys. 21 (1997) 83–86.

    Google Scholar 

  11. 11.

    Rakoczy L. and Płonka, P.M. [Accumulation of manganese in plasmodia of the acellular slime mould (Myxomycetes) Metatrichia vesparium]. Ochr. Środ. Zas. Nat. 18 (1997) 299–308.

    Google Scholar 

  12. 12.

    Rakoczy L. [Preservation of the ability to sporulate of the myxomycete Physarum polycephalum in its dormant stage — spherules. in: Application ofthe In Vitro Cultures in Plant Physiology] (Dubert, F. and Skoczowski, A., Eds.), 1st edition, The Franciszek Górski Department of Plant Physiology, Polish Academy of Science, Kraków, Poland, 1997, 467–473.

    Google Scholar 

  13. 13.

    Verkman, A.S. More than just water channels: unexpected cellular roles of aquaporins. J. Cell Sci. 118 (2005) 3225–3232.

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Levin, M.H. and Verkman, A.S. Aquaporin-3-dependent cell migration and proliferation during corneal re-epithelialization. Invest. Ophthalmol. Vis. Sci. 47 (2006) 4365–4372.

    PubMed  Article  Google Scholar 

  15. 15.

    Verkman A. Role of aquaporins in endothelial water transport. J. Anat. 200 (2002) 528.

    PubMed  Article  Google Scholar 

  16. 16.

    Felix, C.C., Hyde, J.S., Sarna, T. and Sealy, R.C. Interactions of melanin with metal ions. Electron spin resonance evidence for chelate complexes of metal ions with free radicals. J. Amer. Chem. Soc. 100 (1978) 3922–3926.

    Article  CAS  Google Scholar 

  17. 17.

    Deibel, R.M.B. and Chedekel, M.R. Biosynthetic and structural studies on pheomelanin. J. Amer. Chem. Soc. 104 (1982) 7306–7309.

    Article  CAS  Google Scholar 

  18. 18.

    Lukiewicz, S.J. and Sarna, T. Double internal standard for quantitative demonstration of free radicals. Folia Histochem. Cytochem. 9 (1971) 127–128.

    CAS  Google Scholar 

  19. 19.

    Sarna, T. and Plonka, P.M. Biophysical studies of melanin: paramagnetic, ion-exchange and redox properties of melanin pigments and their photoreactivity. in: Biomedical ESR. Biological Magnetic Resonance Series. vol. 23. (Eaton, S.S., Eaton, G.R. and Berliner, L.J., Eds.), 1st edition, Kluwer Acad. Publ., The Netherlands-New York-Boston, 2005, 125–146.

    Google Scholar 

  20. 20.

    Commoner, B., Townsend, J. and Pake, G.W. Free radicals in biological materials. Nature 174 (1954) 689–691.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Sealy, R.C., Hyde, J.S., Felix, C.C., Menon, I.A., Prota, G., Swartz, H.M., Persad, S. and Haberman, H.F. Novel free radicals in synthetic and natural pheomelanins: Distinction between dopa melanins and cysteinyldopa melanins by ESR spectroscopy. Proc. Natl. Acad. Sci. U. S. A. 79 (1982) 2885–2889.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Yordanov, N.D. and Pachova, Z. Gamma-irradiated dry fruits. An example of a wide variety of long-time dependent EPR spectra. Spectrochim. Acta A Mol. Biomol. Spectrosc. 63 (2006) 891–895.

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    McCormick, J.J., Blomquist, J.C. and Rusch H.P. Isolation and characterization of a galactosamine wall from spores and spherules of Physarum polycephalum. J. Bacteriol. 104 (1970) 1119–1125.

    PubMed  CAS  Google Scholar 

  24. 24.

    Plonka, P.M. and Grabacka, M. Melanin synthesis in microorganisms — biotechnological and medical aspects. Acta Biochim. Pol. 53 (2006) 429–443.

    PubMed  CAS  Google Scholar 

  25. 25.

    Slominski, A., Tobin, D.J., Shibahara, S. and Wortsman, J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol. Rev. 84 (2004) 1155–1228.

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Wood, J.M., Jimbow, K., Boissy, R.E., Slominski, A., Plonka, P.M., Slawinski, J., Wortsman, J. and Tosk, J. What is the use of generating melanin? Exp. Dermatol. 8 (1999) 153–164.

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Talarczyk, A. and Hennig, J. Early defence responses in plants infected with pathogenic organisms. Cell. Mol. Biol. Lett. 6 (2001) 955–970.

    PubMed  CAS  Google Scholar 

  28. 28.

    Sommer, A., Ne’eman, E., Steffens, J.C., Mayer, A.M. and Harel, E. Import, targeting, and processing of a plant polyphenol oxidase. Plant Physiol. 105 (1994) 1301–1311.

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Rakoczy, L. and Płonka, P.M. [Plasmodia of acellular slime moulds — materials for verification of the procedure used for natural melanin purification.] Zesz. Probl. Post. N. Roln. 473 (2000) 267–277.

    Google Scholar 

  30. 30.

    Majcherczyk, A., Rakoczy, L. and Hüttermann A. A method for separation of pigments from plasmodia of the true slime molds, Physarum polycephalum and Physarum nudum. Anal. Biochem. 160 (1987) 178–183.

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Okazaki, M., Kuwata, K., Miki, Y., Shiga, S. and Shiga, T. Electron spin relaxation of synthetic melanin and melanin-containing human tissues as studied by electron spin echo and electron spin resonance. Arch. Biochem. Biophys. 242 (1985) 197–205.

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Jara, J.R., Solano, F., Garcia-Borron, J. Aroca, P. and Lozano, P. Regulation of mammalian melanogenesis II: the role of metal cations. Biochim. Biophys. Acta 1035 (1990) 276–285.

    PubMed  CAS  Google Scholar 

  33. 33.

    Napolitano, A., Di Donato, P. and Prota, G. Zinc-catalyzed oxidation of 5-S-cysteinyldopa to 2,2′-bi(2H-1,4-benzothiazine): Tracking the biosynthetic pathway of trichochromes, the characteristic pigments of red hair. J. Org. Chem. 66 (2001) 6958–6966.

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Zhulidov, D.A., Robarts, R.D., Zhulidov, A.V., Zhulidova, O.V., Markelov, D.A., Rusanov, V.A. and Headley, J.V. Zinc accumulation by the slime mold Fuligo septica (L.) Wiggers in the former Soviet Union and North Korea. J. Environ. Qual. 31 (2002) 1038–1042.

    PubMed  CAS  Article  Google Scholar 

  35. 35.

    Buitink, J., Dzuba, S.A., Hoekstra, F.A. and Tsvetkov, Y.D. Pulsed EPR spin-probe study of intracellular glasses in seed and pollen. J. Magn. Reson. 142 (2000) 364–368.

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Rakoczy, L. and Płonka, P. [Pigment changes in irradiated plasmodia of the acellular slime moulds Physarum polycephalum and Physarum nudum. in: Application of the In Vitro Cultures in Plant Physiology] (Dubert, F., Ed.), 1st edition, The Franciszek Górski Department of Plant Physiology, Polish Academy of Science, Kraków, Poland, 1995, 309–315.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Przemysław M. Płonka.

Additional information

Paper authored by participants of the international conference: XXXIV Winter School of the Faculty of Biochemistry, Biophysics and Biotechnology of Jagiellonian University, Zakopane, March 7–11, 2007, “The Cell and Its Environment”. Publication costs were partially covered by the organisers of this meeting.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Krzywda, A., Petelenz, E., Michalczyk, D. et al. Sclerotia of the acellular (true) slime mould Fuligo septica as a model to study melanization and anabiosis. Cell Mol Biol Lett 13, 130–143 (2008). https://doi.org/10.2478/s11658-007-0047-5

Download citation

Key words

  • Aquaporins
  • Dehydration
  • EPR
  • Melanin
  • Myxomycetes
  • Pigmentation