Skip to main content

Cell electrophoresis — a method for cell separation and research into cell surface properties

Abstract

In this paper, we discuss the application of various methods of cell electrophoresis in research into cell surface properties (analytical methods), and the separation of uniform cell subpopulations from cell mixtures (preparative methods). The emphasis is on the prospects of the development of simplified and versatile methodologies, i.e. microcapillary cell electrophoresis and horizontal cell electrophoresis under near-isopycnic conditions. New perspectives are considered on the use of analytical and preparative cell electrophoresis in research on cell differentiation, neoplastic transformation, cell-cell interactions and the biology of stem cells.

Abbreviations

FACS:

fluorescent activated cell sorter

FFE:

free flow electrophoresis

References

  1. Malström, P., Nelson, K., Jönsson, A., Sjögren, H.O., Walter, H. and Albertsson, P.A. Separation of rat leukocytes by countercurrent distribution in aqueous two-phase systems. Cell Immunol. 37 (1978) 409–421.

    Article  Google Scholar 

  2. Perrin-Cocon, L.A., Marche, P.N. and Villiers, C.L. Purification of intracellular compartments involved in antigen processing: a new method based on magnetic sorting. Biochem. J. 338 (1999) 123–130.

    PubMed  Article  CAS  Google Scholar 

  3. Walter, H. and Widen, K.E. Differential electrophoretic behavior in aqueous polymer solutions of red blood cells from Alzheimer patients and from normal individuals. Biochim. Biophys. Acta 1234 (1995) 184–190.

    PubMed  Article  Google Scholar 

  4. Gerritsen, T. Modern separation methods of macromolecules and particles. Progress in Separation and Purification, vol. 2 (Perry, E.S. and Van Oss, C.J., Ed.), Wiley-Interscience, NY, 1969, 1–251.

    Google Scholar 

  5. Pertoft, H. and Lauren, T.C. Isopycinc separation of cells and cell organelles by centrifugation in modified colloidal silica gradients. in: Methods of Cell Separation, vol. 1 (Catsimpoolas, N., Ed.), Plenum Press, NY, 1977, 25–65.

    Google Scholar 

  6. Pretlow II, T.G. and Pretlow, T.P. Separation of viable cells by velocity sedimentation in an isokinetic gradient of ficoll in tissue culture medium. in: Methods of Cell Separation, vol. 1 (Catsimpoolas, N., Ed.), Plenum Press, NY, 1977, 171–191.

    Google Scholar 

  7. Catsimpoolas, N. and Griffith, A.L. Transient electrophoresis and sedimentation analyses of cells in density gradients. in: Methods of Cell Separation, vol. 2 (Catsimpoolas, N., Ed.), Plenum Press, NY, 1979, 1–63.

    Google Scholar 

  8. Patel, D., Ford, T.C. and Rickwood, D. Fractionation of cells by sedimentation methods. in: Cell Separation. A Practical Approach (Fisher, D., Francis, G.E. and Rickwood, D., Ed.), Oxford University Press, Oxford, 1998, 43–89.

    Google Scholar 

  9. Roman, M.C. and Brown, P.R. Free-flow electrophoresis as a preparative separation technique. Anal. Chem. 66 (1994) 86–94.

    Article  Google Scholar 

  10. Mehrishi, J.N. and Bauer, J. Electrophoresis of cells and the biological relevance of surface charge. Electrophoresis 23 (2002) 1984–1994.

    PubMed  Article  CAS  Google Scholar 

  11. Slivinsky, G.G., Hymer, W.C., Bauer, J. and Morrison, D.R. Cellular electrophoretic mobility data: A first approach to a database. Electrophoresis 18 (1997) 1109–1119.

    PubMed  Article  CAS  Google Scholar 

  12. Abramson, H.A., Moyer, L.S. and Gorin, M.H. Electrophoresis of Proteins and the Chemistry of Cell Surfaces, Reinhold, NY, 1942, 1–307.

    Google Scholar 

  13. Fuhrmann, G.F. and Ruhenstroth-Bauer, G. Cell electrophoresis employing a rectangular measuring cuvette. in: Cell Electrophoresis (Ambrose, E.J., Ed.), J&A Churchill Ltd., London, 1965, 22–25.

    Google Scholar 

  14. Lukiewicz, S. and Korohoda, W. Some recent advances in the techniques of cell microelectrophoresis. in: Cell Electrophoresis (Ambrose, E.J., Ed.), J&A Churchill Ltd., London, 1965, 26–33.

    Google Scholar 

  15. Seaman, G.V.F. Electrophoresis using a cylindrical chamber. in: Cell Electrophoresis (Ambrose, E.J., Ed.), J&A Churchill Ltd., London, 1965, 4–21.

    Google Scholar 

  16. Vransky, V.K. Die zellelektrophorese. in: Fortschritte der Experimentellen und Theoretischen Biophysik, Band 18 (Beier, W., Ed.), Leipzig, 1974, 1–97.

  17. Walter, H. Cell partitioning in two-polymer aqueous phase systems. TIBS (1978) 97–100.

  18. Seaman, G.V.F. Electrokinetic behavior of red cells. in: The Red Blood Cells vol. 2 (Mac, D. and Surgenor, N., Ed.), Academic Press, NY, 1975, 1–135.

    Google Scholar 

  19. Ambrose, E.J. Cell Electrophoresis, J&A Churchill Ltd., London, 1965, 1–204.

    Google Scholar 

  20. Abercrombie, M. and Ambrose, E.J. The surface properties of cancer cells: a review. Cancer Res. 22 (1962) 332–245.

    Google Scholar 

  21. Kitagawa, S., Nozaki, O. and Tsuda, T. Study of the relationship between electrophoretic mobility of the diabetic red blood cell and hemoglobin A1c by using a mini-cell electrophoresis apparatus. Electrophoresis 20 (1999) 2560–2565.

    PubMed  Article  CAS  Google Scholar 

  22. Johnson, L.A. and Ferris, J.A. Single cell electrophoresis in determining cell death: potential for use in organ transplant research. J. Biochem. Biophys. Methods 63 (2005) 53–68.

    PubMed  Article  CAS  Google Scholar 

  23. Arnold, R. Pathological haemocytopherograms of rats and mice. in: Cell Electrophoresis (Ambrose, E.J., Ed.), J&A Churchill Ltd., London 1965, 36–47.

    Google Scholar 

  24. Fuhrmann, G.F. Cytopherograms of normal, proliferating and malignant rat liver cells. in: Cell Electrophoresis (Ambrose, E.J., Ed.), J&A Churchill Ltd., London, 1965, 92–98.

    Google Scholar 

  25. Ruhenstroth-Bauer, G. The normal and pathological haemocytopherogram of man. in: Cell Electrophoresis (Ambrose, E.J., Ed.), J&A Churchill Ltd., London 1965, 66–75.

    Google Scholar 

  26. Preece, A.W. and Sabolović, D. in: Cell Electrophoresis: Clinical Application and Methodology, North-Holland Publ. Co., Amsterdam, 1979, 1–496.

    Google Scholar 

  27. Mori, T. and Shimizu, M. The changes of lymphocyte electrophoretic mobility in cancer patient. in: Cell Electrophoresis (Schütt, W. and Klinkmann, H., Ed.), Walter de Gruyter, Berlin (NY), 1985, 355–366.

    Google Scholar 

  28. Rychly, J., Anders, O., Eggers, G. and Schulz, M. Electrophoretic mobility distribution of cells in leukaemia. in: Cell Electrophoresis (Schütt, W. and Klinkmann, H., Ed.), Walter de Gruyter, Berlin (NY), 1985, 477–483.

    Google Scholar 

  29. Korohoda, W. Electrophoretic studies on plant cells III. Electrophoretic mobilities of cell-forms of Myxomycetae Physarum nudum Macbride. Folia Biologica 11 (1963) 465–472.

    Google Scholar 

  30. Garrod, D.R. and Gingell, D. A progressive change in the electrophoretic mobility of preaggregation cells of the slime mould, Dictyostelium discoideum. J. Cell Sci. 6 (1970) 277–284.

    PubMed  CAS  Google Scholar 

  31. Masui, M., Takata, H. and Kominami, T. Cell adhesion and negative cell surface charges in embryonic cells of the starfish Asterina pectinifera. Electrophoresis 23 (2002) 2087–2095.

    PubMed  Article  CAS  Google Scholar 

  32. Thomas, W.A. Dual Adhesive Recognition Systems in Chick Embryonic Cells. in: Developmental Biology vol. 3 (Steinberg, M.S., Ed.), Plenum Publ. Co., NY, 1986, 157–189.

    Google Scholar 

  33. Doljanski, F. and Eisenberg, S. The action of neuraminidase on the electrophoretic mobility of liver cells. in: Cell Electrophoresis (Ambrose, E.J., Ed.), J&A Churchill Ltd., London, 1965, 78–84.

    Google Scholar 

  34. Fuhrmann, G.F. Selective effects of neuraminidase on cell surfaces. in: Cell Electrophoresis (Ambrose, E.J., Ed.), J&A Churchill Ltd., London, 1965, 85–91.

    Google Scholar 

  35. James, A.M. The modification of bacterial surface structures by chemical and enzymic treatments. in: Cell Electrophoresis (Ambrose, E.J., Ed.), J&A Churchill Ltd., London, 1965, 154–169.

    Google Scholar 

  36. Seaman, G.V.F. and Cook, G.M.W. Modification of the electrophoretic behaviour of the erythrocyte by chemical and enzymatic methods. in: Cell Electrophoresis (Ambrose, E.J., Ed.), J&A Churchill Ltd., London, 1965, 48–65.

    Google Scholar 

  37. Bäumler, H., Donath, E., Krabi, A., Knippel, W., Budde, A. and Kiesewetter, H. Electrophoresis of human red blood cells and platelets. Evidence for depletion of dextran. Biorheology 33 (1996) 333–351.

    PubMed  Article  Google Scholar 

  38. Sabolovic, D., Sestier, C., Perrotin, P., Guillet, R., Tefi, M. and Boynard, M. Covalent binding of polyethylene glycol to the surface of red blood cells as detected and followed up by cell electrophoresis and rheological methods. Electrophoresis 21 (2000) 301–306.

    PubMed  Article  CAS  Google Scholar 

  39. Wilson, W.W., Wade, M.M., Holman, S.C. and Chaplin, F.R. Status of methods for assessing bacterial cell surface charge properties based on zeta potential measurements. J. Microbiol. Methods 43 (2001) 153–164.

    PubMed  Article  CAS  Google Scholar 

  40. Wang, C.C., Lu, J.N. and Young, T.H. The alteration of cell membrane charge after cultured on polymer membranes. Biomaterials 28 (2007) 625–631.

    PubMed  Article  CAS  Google Scholar 

  41. Weiss, L. The cell periphery metastasis and other contact phenomena. Frontiers of Biology, vol. 7 (Neuberger, A. and Tatum, E.L., Ed.), North-Holland Publ. Co., Amsterdam, 1979, 1–388.

    Google Scholar 

  42. Deyl, Z. Electrophoresis. A Survey of Techniques and Applications. Part A; Techniques. in: Journal of Chromatography Library, vol. 18, Elsevier Scientific Publ. Co., Amsterdam, 1979, 1–385.

    Google Scholar 

  43. Ertan, N.Z. and Rampling, M.W. Effect of ionic strength of buffer on the measurement of erythrocyte electrophoretic mobility. Med. Sci. Monit. 9 (2003) 378–381.

    Google Scholar 

  44. Fürész, J., Pál, K., Budavári, I. and Lapis, K. The physico-chemical properties of tumor cells with different metastatic potential. Neoplasma 32 (1985) 689–693.

    PubMed  Google Scholar 

  45. Forrester, J.A. Microelectrophoresis of normal and polyoma virus transformed hamster kidney fibroblasts. in: Cell Electrophoresis (Ambrose, E.J., Ed.), J&A Churchill Ltd., London, 1965, 115–124.

    Google Scholar 

  46. Gardner, B. The effect of dextrans on zeta potential. Proc. Soc. Exp. Biol. Med. 131 (1969) 1115–1118.

    PubMed  CAS  Google Scholar 

  47. Jovtchev, S., Djenev, I., Stoeff, S. and Stoylov, S. Role of electrical and mechanical properties of red blood cells for their aggregation. Colloids and Surfaces A: Physicochem. Engineer. Asp. 164 (2000) 95–104.

    Article  CAS  Google Scholar 

  48. Neu, B., Armstrong, J.K., Fisher, T.C. and Meiselman, H.J. Surface characterization of poly(ethylene glycol) coated human red blood cells by particle electrophoresis. Biorheology 40 (2003) 477–487.

    PubMed  CAS  Google Scholar 

  49. Eggleton, P. Separation of cells using free flow electrophoresis. in: Cell Separation. A Practical Approach (Fisher, D., Francis, G.E. and Rickwood, D., Ed.), Oxford University Press, Oxford, 1998, 213–252.

    Google Scholar 

  50. Kuhn, R., Wagner, H., Mosher, R.A. and Thormann, W. Experimental and theoretical investigation of the stability of stepwise pH gradients in continuous flow electrophoresis. Electrophoresis 8 (1987) 503–508.

    Article  CAS  Google Scholar 

  51. Chaubal, K.A. Cell electrophoretic mobility as an aid to study biological systems. in: Cell Electrophoresis (Schütt, W. and Klinkmann, H., Ed.) Walter de Gruyter, Berlin (NY), 1985, 515–526.

    Google Scholar 

  52. Schüt, W., Thomaneck, U., Knippel, E., Rychly, J. and Klinkmann, H. Suitability of automated single cell electrophoresis (ASCE) for biomedical and clinical applications: General remarks. in: Cell Electrophoresis (Schütt, W. and Klinkmann, H., Ed.), Walter de Gruyter, Berlin (NY), 1985, 313–332.

    Google Scholar 

  53. Righetti, P.G., Van Oss, C.J. and Vanderhoff, J.W. Electrokinetic Separation Methods, Elsevier/North-Holland Biomedical Press, Amsterdam, 1979, 1–273.

    Google Scholar 

  54. Desai, M.J. and Armstrong, D.W. Separation, identification, and characterization of microorganisms by capillary electrophoresis. Microbiol. Mol. Biol. Rev. 67 (2003) 38–57.

    PubMed  Article  CAS  Google Scholar 

  55. Ichiki, T., Ujiie, T., Shinbashi, S., Okuda, T. and Horiike, Y. Immunoelectrophoresis of red blood cells performed on microcapillary chips. Electrophoresis 23 (2002) 2029–2034.

    PubMed  Article  CAS  Google Scholar 

  56. Jabeen, R., Payne, D., Wiktorowicz, J., Mohammad, A. and Petersen, J. Capillary electrophoresis and the clinical laboratory. Electrophoresis 27 (2007) 2413–2438.

    Article  CAS  Google Scholar 

  57. Omasu, F., Nakano, Y. and Ichiki, T. Measurement of the electrophoretic mobility of sheep erythrocytes using microcapillary chips. Electrophoresis 26 (2005) 1163–1167.

    PubMed  Article  CAS  Google Scholar 

  58. Seaman, G.V.F. and Knox, R.J. Particle electrophoresis for quality assurance and process control. Electrophoresis 22 (2001) 373–385.

    PubMed  Article  CAS  Google Scholar 

  59. Woods, L.A, Roddy, T.P. and Ewing, A.G. Capillary electrophoresis of single mammalian cells. Electrophoresis 25 (2004) 1181–1187.

    PubMed  Article  CAS  Google Scholar 

  60. Lu, W.H., Deng, W.H., Liu, S.T., Chen, T.B. and Ra, P.F. Capillary electrophoresis of erythrocytes. Anal. Biochem. 314 (2003) 194–198.

    PubMed  Article  CAS  Google Scholar 

  61. Rathore, A.S. Theory of electroosmotic flow, retention and separation efficiency in capillary electrochromatography. Electrophoresis 23 (2002) 3827–3846.

    PubMed  Article  CAS  Google Scholar 

  62. Tsuda, T., Kitagawa, S. and Yamamoto, Y. Estimation of electrophoretic mobilities of red blood cells in 1-G and microgravity using a miniature capillary electrophoresis unit. Electrophoresis 23 (2002) 2035–2039.

    PubMed  Article  CAS  Google Scholar 

  63. Watarai, H. and Namba, M. Capillary magnetophoresis of human blood cells and their magnetophoretic trapping in a flow system. J. Chromatogr. A 961 (2002) 3–8.

    PubMed  Article  CAS  Google Scholar 

  64. Hsu, J.P., Hsieh, T.S., Young, T.H. and Tseng, S. Electrophoresis of biological cells: charge-regulation and multivalent counterions association model. Electrophoresis 24 (2003) 1338–1346.

    PubMed  Article  CAS  Google Scholar 

  65. Chiari, M. and Righetti, P.G. New types of separation matrices for electrophoresis. Electrophoresis 16 (1995) 1815–1829.

    PubMed  Article  CAS  Google Scholar 

  66. Platsoucas, C.D., Good, R.A. and Gupta, S. Separation of human T lymphocyte subpopulations (Tμ, Tγ) by density gradient electrophoresis. Proc. Natl. Acad. Sci. USA 76 (1979) 1972–1976.

    PubMed  Article  CAS  Google Scholar 

  67. Josefowicz, J.Y. Electrophoretic light scattering and its application to the study of cells. in: Methods of Cell Separation, vol. 2 (Catsimpoolas, N., Ed.), Plenum Press NY, 1979, 67–91.

    Google Scholar 

  68. Heidrich, H.G. and Hannig, K. Separation of cell population by free-flow electrophoresis. Methods Enzymol. 171 (1989) 513–531.

    PubMed  CAS  Article  Google Scholar 

  69. Zeiller, K., Löser, R., Pascher, G. and Hannig, K. Free-flow electrophoresis II: Analysis of the method with respect to preparative cell separation. Hoppe-Seyler’s Z Physiol. Chem. 356 (1975) 1225–1244.

    PubMed  CAS  Google Scholar 

  70. Hansen, E. Preparative free flow electrophoresis of lymphoid cells: A review. in: Cell Electrophoresis (Schütt, W. and Klinkmann, H., Ed.), Walter de Gruyter, Berlin (NY), 1985, 287–304.

    Google Scholar 

  71. Sengeløv, H. and Borregaard, N. Free-flow electrophoresis in subcellular fractionation of human neutrophils. J. Immunol. Methods 232 (1999) 145–152.

    PubMed  Article  Google Scholar 

  72. Morré, D.J., Morré, D.M. and van Alstine, J.M. Separation of endosomes by aqueous two-phase partition and free-flow electrophoresis. J. Chromatogr. B 711 (1998) 203–215.

    Article  Google Scholar 

  73. Wang, Y., Hancock, W.S., Weber, G., Eckerskorn, C. and Palmer-Toy, D. Free-flow electrophoresis coupled with liquid chromatography/mass spectrometry for a proteomic study of the human cell line (K562/CR3). J. Chromatogr. A 1053 (2004) 269–278.

    PubMed  CAS  Google Scholar 

  74. Mehrishi, J.N. Molecular aspects of the mammalian cell surface. in: Progress in Biophysics and Molecular Biology (Butler, J.A.V. and Noble, D., Ed.), Pergamon Press, Oxford, 1972, 3–70.

    Google Scholar 

  75. Cai, W.B., Roberts, S.A. and Potten, C.S. The number of clonogenic cells in crypts in three regions of murine large intestine. Int. J. Radiat. Biol. 71 (1997) 573–579.

    PubMed  Article  CAS  Google Scholar 

  76. Chan, R.W., Schwab, K.E. and Gargett, C.E. Clonogenicity of human endometrial epithelial and stromal cells. Biol. Reprod. 70 (2004) 1738–1750.

    PubMed  Article  CAS  Google Scholar 

  77. Friedl, P., Brocker, E.B. and Zanker, K.S. Integrins, cell matrix interactions and cell migration strategies: fundamental differences in leukocytes and tumor cells. Cell Adhes. Commun. 6 (1998) 225–236.

    PubMed  CAS  Google Scholar 

  78. Lindhout, E., Figdor, C.G. and Adema, G.J. Dendritic cells: migratory cells that are attractive. Cell Adhes. Commun. 6 (1998) 117–123.

    PubMed  CAS  Article  Google Scholar 

  79. Reilly, C.E. Astrocytes instruct stem cells to differentiate into neurons. J. Neurol. 249 (2002) 950–952.

    PubMed  Article  Google Scholar 

  80. Wang, N., Wilkin, C., Böcking, A. and Tribukait, B. Evaluation of tumor heterogeneity of prostate carcinoma by flow-and image DNA cytometry and histopathological grading. Anal. Cell Pathol. 20 (2000) 49–62.

    PubMed  CAS  Google Scholar 

  81. Wyckoff, J.B., Segall, J.E. and Condeelis, J.S. The collection of the motile population of cells from a living tumor. Cancer Res. 60 (2000) 5401–5404.

    PubMed  CAS  Google Scholar 

  82. Armstrong, D.W., Schulte, G., Schneiderheinze, J.M. and Westenberg, D.J. Separating microbes in the manner of molecules. 1. Capillary electrokinetic approaches. Anal. Chem. 71 (1999) 5465–5469.

    PubMed  Article  CAS  Google Scholar 

  83. Ellinger, I., Klapper, H., Courtoy, P.J., Vaerman, J.P. and Fuchs, R. Different temperature sensitivity of endosomes involved in transport to lysosomes and transcytosis in rat hepatocytes: analysis by free-flow electrophoresis. Electrophoresis 23 (2002) 2117–2129.

    PubMed  Article  CAS  Google Scholar 

  84. Mohr, H. and Volkl, A. Isolation of peroxisomal subpopulations from mouse liver by immune free-flow electrophoresis. Electrophoresis 23 (2002) 2130–2137.

    PubMed  Article  CAS  Google Scholar 

  85. Weber G., Grimm, D. and Bauer, J. Application of binary buffer systems to free flow cell electrophoresis. Electrophoresis 21 (2000) 325–328.

    PubMed  Article  CAS  Google Scholar 

  86. Wilk, A., Rośkowicz, K. and Korohoda, W. A new method for the preparative and analytical electrophoresis of cells. Cell. Mol. Biol. Lett. 11 (2006) 579–593.

    PubMed  Article  Google Scholar 

  87. Wilson, W.W., Wade, M.M., Holman, S.C. and Champlin, F.R. Status of methods for assessing bacterial cell surface charge properties based on zeta potential measurements. J. Microbiol. Methods 43 (2001) 153–164.

    PubMed  Article  CAS  Google Scholar 

  88. Young, T.H., Hung, C.H., Huang, S.W., Hsieh, T.S. and Hsu, J.P. Determination of surface charge properties of PC-12 cells by electrophoresis. J. Colloid Interface Sci. 285 (2005) 557–561.

    PubMed  Article  CAS  Google Scholar 

  89. Erskine, L., Stewart, R. and McCaig, C.D. Electric field-directed growth and branching of cultured frog nerves: effects of aminoglycosides and polycations. J. Neurobiol. 26 (1995) 523–536.

    PubMed  Article  CAS  Google Scholar 

  90. Gingell, D. Membrane surface potential in relation to a possible mechanism for intercellular interactions and cellular response: a physical basis. J. Theor. Biol. 17 (1967) 451–482.

    PubMed  Article  CAS  Google Scholar 

  91. Givan, A.L. Flow cytometry: an introduction. Methods Mol. Biol. 263 (2004) 1–32.

    PubMed  Google Scholar 

  92. Haraguchi, N., Inoue, H., Tanaka, F., Mimowi, K., Utsunomiya, T., Sasaki, A. and Mori, M. Cancer stem cells in human gastrointestinal cancers. Hum. Cell 19 (2006) 24–29.

    PubMed  Article  Google Scholar 

  93. Heberle, J., Riesle, J., Thiedemann, G., Oesterhelt, D. and Dencher, N.A. Proton migration along the membrane surface and retarded surface to bulk transfer. Nature 370 (1994) 379–382.

    PubMed  Article  CAS  Google Scholar 

  94. Kamiya, A., Gonzalez, F.J. and Nakauchi, H. Identification and differentiation of hepatic stem cells during liver development. Front. Biosci. 111 (2006) 1302–1310.

    Article  Google Scholar 

  95. Woods, L.A., Powell, P.R., Paxon, T.L. and Ewing, A.G. Analysis of Mammalian Cell Cytoplasm with Electrophoresis in Nanometer Inner Diameter Capillaries. Electroanalysis 17 (2005) 1192–1197.

    PubMed  Article  CAS  Google Scholar 

  96. Xuan, X., Hu, G. and Li, D. Joule heating effects on separation efficiency in capillary zone electrophoresis with an initial voltage ramp. Electrophoresis 27 (2006) 3171–3180.

    PubMed  Article  CAS  Google Scholar 

  97. Wilk, A., Urbańska, K., Woolley, D.E. and Korohoda, W. Cell separation with horizontal cell electrophoresis under near-isopycnic conditions on a “density cushion”. Cell. Mol. Biol. Lett. 13 (2008), in press.

  98. Akiba, T., Nishi, A., Takaoki, M., Matsumiya, H., Tomita, F., Usami, R. and Nagaoka, S. Separation of bacterial cells by free flow electrophoresis under microgravity: a result of the spacelab — Japan project on space shuttle flight sts-47. Acta Astron. 36 (1995) 177–181.

    Article  CAS  Google Scholar 

  99. Hannig, K., Kowalski, M., Klock, G., Zimmermann, U. and Mang, V. Free-flow electrophoresis under microgravity: evidence for enhanced resolution of cell separation. Electrophoresis 11 (1990) 600–604.

    PubMed  Article  CAS  Google Scholar 

  100. Todd, P. Microgravity cell electrophoresis experiments on the space shuttle: a 1984 overview. in: Cell Electrophoresis (Schütt, W. and Klinkmann H., Ed.), Walter de Gruyter, Berlin (NY), 1985, 3–19.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Włodzimierz Korohoda.

Additional information

Paper authored by participants of the international conference: XXXIV Winter School of the Faculty of Biochemistry, Biophysics and Biotechnology of Jagiellonian University, Zakopane, March 7–11, 2007, “The Cell and Its Environment”. Publication cost was covered by the organisers of this meeting.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Korohoda, W., Wilk, A. Cell electrophoresis — a method for cell separation and research into cell surface properties. Cell Mol Biol Lett 13, 312–326 (2008). https://doi.org/10.2478/s11658-008-0004-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-008-0004-y

Keywords

  • Cell electrophoresis
  • Cell separation
  • Cell surface