Skip to main content

Cell separation with horizontal cell electrophoresis under near-isopycnic conditions on a “density cushion”

Abstract

This report describes an improvement made to the horizontal cell electrophoresis methodology. It involves using two liquid layers differing in density to produce an interface described as a “density cushion”. The electrophoretic system that employed an anti-convective porous matrix to separate red blood cells (RBC) and charged dyes effectively was found to be unsuitable for some other mammalian cells. The “density cushion” method was found to be more versatile and applicable to studies on the separation of a variety of cell types. The experiments described show the differences between the electrophoretic mobilities of a human eosinophilic leukaemia cell line (Eol-1) and RBC, both with and without the modification of the cell surface properties.

Abbreviations

Eol-1:

human eosinophilic leukaemia cell line

PU:

polyurethane

RBC:

red blood cells

References

  1. Abercrombie, M. and Ambrose, E.J. The surface properties of cancer cells: A review. Cancer Res. 22 (1962) 245–332.

    Google Scholar 

  2. Fürész, J., Pál, K., Budavári, I. and Lapis, K. The physico-chemical properties of tumor cells with different metastatic potential. Neoplasma 32 (1985) 689–693.

    PubMed  Google Scholar 

  3. Walter, H. and Widen, K.E. Differential electrophoretic behavior in aqueous polymer solutions of red blood cells from Alzheimer patients and from normal individuals. Biochim. Biophys. Acta 1234 (1995) 184–90.

    PubMed  Article  Google Scholar 

  4. Rychly, J., Anders, O., Eggers, G. and Schulz, M. Electrophoretic mobility distribution of cells in leukaemia. in: Cell Electrophoresis (Schütt, W., Klinkmann, H., Ed.), Walter de Gruyter, Berlin (NY) 1985, 477–483.

    Google Scholar 

  5. Slivinsky, G.G., Hymer, W.C., Bauer, J. and Morrison, D.R. Cellular electrophoretic mobility data: A first approach to a database. Electrophoresis 18 (1997) 1109–1119.

    PubMed  Article  CAS  Google Scholar 

  6. Chaubal, K.A. Cell electrophoretic mobility as an aid to study biological systems, in: Cell Electrophoresis (Schütt, W., Klinkmann, H., Ed.), Walter de Gruyter, Berlin (NY) 1985, 515–526.

    Google Scholar 

  7. Mehrishi, J.N. Molecular aspects of the mammalian cell surface. in: Progress in Biophysics and Molecular Biology (Butler, J.A.V. and Noble, D., Ed.), Pergamon Press, Oxford, 1972, 3–70.

    Google Scholar 

  8. Lu, W.-H., Deng, W.-H., Liu, S.-T., Chen, T.-B. and Rao, P.-F. Capillary electrophoresis of erythrocytes. Anal. Biochem. 314 (2003) 194–198.

    PubMed  Article  CAS  Google Scholar 

  9. Omasu, F., Nakano, Y. and Ichiki, T. Measurement of the electrophoretic mobility of sheep erythrocytes using microcapillary chips. Electrophoresis 26 (2005) 1163–1167.

    PubMed  Article  CAS  Google Scholar 

  10. Eggleton, P. Separation of cells using free flow electrophoresis. in: Cell Separation A Practical Approach (Fisher, D., Francis, G.E. and Rickwood, D., Ed.), Oxford University Press, Oxford, New York, Tokyo, 1998, 213–252.

    Google Scholar 

  11. Mehrishi, J.N. and Bauer, J. Electrophoresis of cells and the biological relevance of surface charge. Electrophoresis 23 (2002) 1984–1994.

    PubMed  Article  CAS  Google Scholar 

  12. Wilk, A., Roskowicz, K. and Korohoda, W. A new method for the preparative and analytical electrophoresis of cells. Cell. Mol. Biol. Lett. 11 (2006) 579–593.

    PubMed  Article  Google Scholar 

  13. Dwyer, D.S., Gordon, K. and Jones, B. Ruthenium Red potently inhibits immune responses both in vitro and in vivo. Int. J. Immunopharmacol. 17 (1995) 931–940.

    PubMed  Article  CAS  Google Scholar 

  14. Szydłowska, H., Zaporowska, E., Kuszlik-Jochym, K., Korohoda, W. and Branny, J. Membranolytic activity of detergents as studied with cell viability tests. Folia Histochem. Cytochem. 16 (1978) 69–78.

    Google Scholar 

  15. Heiger, D.N. Principles of Capillary Electrophoresis. in: High Performance Capillary Electrophoresis-An Introduction (Heiger, D.N., Ed.) Hewlett-Packard Company, France, 1992, 11–39.

    Google Scholar 

  16. Nakamura, F., Naka, M. and Tanaka, T. Inhibition of actin-activated myosin Mg (2+)-ATPase in smooth muscle by ruthenium red. FEBS Lett. 314 (1992) 93–96.

    PubMed  Article  CAS  Google Scholar 

  17. Pimenta, P.F. and De Souza, W. Ultrastructure and cytochemistry of the cell surface of eosinophils. J. Submicrosc. Cytol. 14 (1982) 227–237.

    PubMed  CAS  Google Scholar 

  18. Candiano, G., Ghiggeri, G.M., Oleggini, R., Ginevri, F., Altieri, P. and Gusmano, R. Interaction between cationic dyes and erythrocyte membranes in minimal change nephropathy: an electrophoretic approach. Pediatr. Nephrol. 5 (1991) 173–178.

    PubMed  Article  CAS  Google Scholar 

  19. Korohoda, W. and Wilk, A. Cell electrophoresis-a method for cell separation and research into cell surface properties. Cell. Mol. Biol. Lett. 13 (2008) in press.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Włodzimierz Korohoda.

Additional information

Paper authored by participants of the international conference: XXXIV Winter School of the Faculty of Biochemistry, Biophysics and Biotechnology of Jagiellonian University, Zakopane, March 7–11, 2007, “The Cell and Its Environment”. Publication cost was covered by the organisers of this meeting.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wilk, A., Urbańska, K., Woolley, D.E. et al. Cell separation with horizontal cell electrophoresis under near-isopycnic conditions on a “density cushion”. Cell Mol Biol Lett 13, 366–374 (2008). https://doi.org/10.2478/s11658-008-0007-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-008-0007-8

Keywords

  • Cell electrophoresis
  • Cell separation
  • Cell surface