Skip to main content

The cell type-specific effect of TAp73 isoforms on the cell cycle and apoptosis


p73, a member of the p53 family, exhibits activities similar to those of p53, including the ability to induce growth arrest and apoptosis. p73 influences chemotherapeutic responses in human cancer patients, in association with p53. Alternative splicing of the TP73 gene produces many p73 C- and N-terminal isoforms, which vary in their transcriptional activity towards p53-responsive promoters. In this paper, we show that the C-terminal spliced isoforms of the p73 protein differ in their DNA-binding capacity, but this is not an accurate predictor of transcriptional activity. In different p53-null cell lines, p73β induces either mitochondrial-associated or death receptor-mediated apoptosis, and these differences are reflected in different gene expression profiles. In addition, p73 induces cell cycle arrest and p21WAF1 expression in H1299 cells, but not in Saos-2. This data shows that TAp73 isoforms act differently depending on the tumour cell background, and have important implications for p73-mediated therapeutic responses in individual human cancer patients.



TRAF and TNF receptor-associated protein-22


apurinic/apyrimidinic endonuclease 1/redox factor


apoptosis stimulating proteins of p53


cyclin-dependent protein kinase-1


Dulbecco's modified Eagle medium


trail death receptor


electrophoretic mobility-shift assay


Fas-associated factor


foetal bovine serum


in vitro transcription/translation


microtubule-associated protein 4


p53-induced protein with a death domain


promyelocytic leukaemia gene


SDS-polyacrylamide gel electrophoresis


TNF receptor-associated factor


  1. Murray-Zmijewski, F., Lane, D.P. and Bourdon, J.C. p53/p63/p73 isoforms: an orchestra of isoforms to harmonise cell differentiation and response to stress. Cell Death Differ. 13 (2006) 962–972.

    Article  PubMed  CAS  Google Scholar 

  2. Kaghad, M., Bonnet, H., Yang, A., Creancier, L., Biscan, J.C., Valent, A., Minty, A., Chalon, P., Lelias, J.M., Dumont, X., Ferrara, P., McKeon, F. and Caput, D. Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 90 (1997) 809–819.

    Article  PubMed  CAS  Google Scholar 

  3. Melino, G., De Laurenzi, V. and Vousden, K.H. p73: Friend or foe in tumorigenesis. Nat. Rev. Cancer 2 (2002) 605–615.

    Article  PubMed  CAS  Google Scholar 

  4. Dominguez, G., Garcia, J.M., Pena, C., Silva, J., Garcia, V., Martinez, L., Maximiano, C., Gomez, M.E., Rivera, J.A., Garcia-Andrade, C. and Bonilla, F. DeltaTAp73 upregulation correlates with poor prognosis in human tumors: putative in vivo network involving p73 isoforms, p53, and E2F-1. J. Clin. Oncol. 24 (2006) 805–815.

    Article  PubMed  CAS  Google Scholar 

  5. Concin, N., Becker, K., Slade, N., Erster, S., Mueller-Holzner, E., Ulmer, H., Daxenbichler, G., Zeimet, A., Zeillinger, R., Marth, C. and Moll, U.M. Transdominant DeltaTAp73 isoforms are frequently up-regulated in ovarian cancer. Evidence for their role as epigenetic p53 inhibitors in vivo. Cancer Res. 64 (2004) 2449–2460.

    Article  PubMed  CAS  Google Scholar 

  6. Deyoung, M.P. and Ellisen, L.W. p63 and p73 in human cancer: defining the network. Oncogene 26 (2007) 5169–5183.

    Article  PubMed  CAS  Google Scholar 

  7. Coates, P.J. Regulating p73 isoforms in human tumours. J. Pathol. 210 (2006) 385–389.

    Article  PubMed  CAS  Google Scholar 

  8. Flores, E.R., Tsai, K.Y., Crowley, D., Sengupta, S., Yang, A., McKeon, F. and Jacks, T. p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature 416 (2002) 560–564.

    Article  PubMed  CAS  Google Scholar 

  9. Irwin, M.S., Kondo, K., Marin, M.C., Cheng, L.S., Hahn, W.C. and Kaelin, W.G., Jr. Chemosensitivity linked to p73 function. Cancer Cell 3 (2003) 403–410.

    Article  PubMed  CAS  Google Scholar 

  10. Rocco, J.W., Leong, C.O., Kuperwasser, N., DeYoung, M.P. and Ellisen, L.W. p63 mediates survival in squamous cell carcinoma by suppression of p73-dependent apoptosis. Cancer Cell 9 (2006) 45–56.

    Article  PubMed  CAS  Google Scholar 

  11. Vojtesek, B., Bartek, J., Midgley, C.A. and Lane, D.P. An immunochemical analysis of the human nuclear phosphoprotein p53. New monoclonal antibodies and epitope mapping using recombinant p53. J. Immunol. Methods 151 (1992) 237–244.

    Article  PubMed  CAS  Google Scholar 

  12. Chen, J., Marechal, V. and Levine, A.J. Mapping of the p53 and mdm-2 interaction domains. Mol. Cell. Biol. 13 (1993) 4107–4114.

    PubMed  CAS  Google Scholar 

  13. Fredersdorf, S., Milne, A.W., Hall, P.A. and Lu, X. Characterization of a panel of novel anti-p21Waf1/Cip1 monoclonal antibodies and immunochemical analysis of p21Waf1/Cip1 expression in normal human tissues. Am. J. Pathol. 148 (1996) 825–835.

    PubMed  CAS  Google Scholar 

  14. Masuda, H., Miller, C., Koeffler, H.P., Battifora, H. and Cline, M.J. Rearrangement of the p53 gene in human osteogenic sarcomas. Proc. Natl. Acad. Sci. U S A 84 (1987) 7716–7719.

    Article  PubMed  CAS  Google Scholar 

  15. Bodner, S.M., Minna, J.D., Jensen, S.M., D'Amico, D., Carbone, D., Mitsudomi, T., Fedorko, J., Buchhagen, D.L., Nau, M.M. and Gazdar, A.F. Expression of mutant p53 proteins in lung cancer correlates with the class of p53 gene mutation. Oncogene 7 (1992) 743–749.

    PubMed  CAS  Google Scholar 

  16. Sambrook, J., Fritsch, E.F. and Maniatis, T. Assay for β-Galactosidase in Extracts of Mammalian Cells. in: Molecular cloning, 2th edition, Cold Spring Harbor Laboratory Press, 1989, 16.66–16.67.

  17. Thurfjell, N., Coates, P.J., Uusitalo, T., Mahani, D., Dabelsteen, E., Dahlqvist, A., Sjostrom, B., Roos, G. and Nylander, K. Complex p63 mRNA isoform expression patterns in squamous cell carcinoma of the head and neck. Int. J. Oncol. 25 (2004) 27–35.

    PubMed  CAS  Google Scholar 

  18. Boldrup, L., Bourdon, J.C., Coates, P.J., Sjostrom, B. and Nylander, K. Expression of p53 isoforms in squamous cell carcinoma of the head and neck. Eur. J. Cancer 43 (2007) 617–623.

    Article  PubMed  CAS  Google Scholar 

  19. Lohr, K., Moritz, C., Contente, A. and Dobbelstein, M. p21/CDKN1A mediates negative regulation of transcription by p53. J. Biol. Chem. 278 (2003) 32507–32516.

    Article  PubMed  Google Scholar 

  20. Grob, T.J., Novak, U., Maisse, C., Barcaroli, D., Luthi, A.U., Pirnia, F., Hugli, B., Graber, H.U., De Laurenzi, V., Fey, M.F., Melino, G. and Tobler, A. Human delta Np73 regulates a dominant negative feedback loop for TAp73 and p53. Cell. Death. Differ. 8 (2001) 1213–1223.

    Article  PubMed  CAS  Google Scholar 

  21. Ueda, Y., Hijikata, M., Takagi, S., Chiba, T. and Shimotohno, K. Transcriptional activities of p73 splicing variants are regulated by intervariant association. Biochem. J. 356 (2001) 859–866.

    Article  PubMed  CAS  Google Scholar 

  22. Brazda, V., Muller, P., Brozkova, K. and Vojtesek, B. Restoring wild-type conformation and DNA-binding activity of mutant p53 is insufficient for restoration of transcriptional activity. Biochem. Biophys. Res. Commun 351 (2006) 499–506.

    Article  PubMed  CAS  Google Scholar 

  23. Bernassola, F., Salomoni, P., Oberst, A., Di Como, C.J., Pagano, M., Melino, G. and Pandolfi, P.P. Ubiquitin-dependent degradation of p73 is inhibited by PML. J. Exp. Med. 199 (2004) 1545–1557.

    Article  PubMed  CAS  Google Scholar 

  24. Murphy, M., Ahn, J., Walker, K.K., Hoffman, W.H., Evans, R.M., Levine, A.J. and George, D.L. Transcriptional repression by wild-type p53 utilizes histone deacetylases, mediated by interaction with mSin3a. Genes. Dev. 13 (1999) 2490–2501.

    Article  PubMed  CAS  Google Scholar 

  25. Lanza, M., Marinari, B., Papoutsaki, M., Giustizieri, M.L., D'Alessandra, Y., Chimenti, S., Guerrini, L. and Costanzo, A. Cross-talks in the p53 family: deltaNp63 is an anti-apoptotic target for deltaNp73alpha and p53 gain-offunction mutants. Cell Cycle 5 (2006) 1996–2004.

    PubMed  CAS  Google Scholar 

  26. Terrasson, J., Allart, S., Martin, H., Lule, J., Haddada, H., Caput, D. and Davrinche, C. p73-dependent apoptosis through death receptor: impairment by human cytomegalovirus infection. Cancer Res. 65 (2005) 2787–2794.

    Article  PubMed  CAS  Google Scholar 

  27. Glasgow, J.N., Qiu, J., Rassin, D., Grafe, M., Wood, T. and Perez-Pol, J.R. Transcriptional regulation of the BCL-X gene by NF-kappaB is an element of hypoxic responses in the rat brain. Neurochem. Res. 26 (2001) 647–659.

    Article  PubMed  CAS  Google Scholar 

  28. Reed, J.C. Apoptosis-targeted therapies for cancer. Cancer Cell 3 (2003) 17–22.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Borivoj Vojtesek.

Additional information

These authors contributed equally to this paper

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Holcakova, J., Ceskova, P., Hrstka, R. et al. The cell type-specific effect of TAp73 isoforms on the cell cycle and apoptosis. Cell Mol Biol Lett 13, 404–420 (2008).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Key words

  • p53
  • TAp73
  • ΔTAp73
  • DNA binding
  • Transactivation
  • Cell cycle
  • Apoptosis