Skip to main content

Calcium transport by mammary secretory cells: Mechanisms underlying transepithelial movement

Abstract

The secretion of calcium into milk by mammary epithelial cells is a fundamentally important process. Despite this, the mechanisms which underlie the movement of calcium across the lactating mammary gland are still poorly understood. There are, however, two models which describe the handling of calcium by mammary epithelial cells. On the one hand, a model which has existed for several decades, suggests that the vast majority of calcium enters milk via the Golgi secretory vesicle route. On the other hand, a new model has recently been proposed which implies that the active transport of calcium across the apical membrane of mammary secretory cells is central to milk calcium secretion. This short review examines the strengths and weaknesses of both models and suggests some experiments which could add to our understanding of mammary calcium transport.

Abbreviations

PMCA:

plasma membrane calcium-ATPase

SERCA:

sarco/endoplasmic reticulum calcium-ATPase

SPCA:

secretory pathway calcium-ATPase

References

  1. Greer, F.R., Tsang, R.C., Seary, J.E., Levin, R.S. and Steichen, J.J. Mineral homeostasis during lactation — relationship to serum 1,25-dihydroxyvitamin D, 25-hydroxyvitamin D, parathyroid hormone, and calcitonin. Am. J. Clin. Nutr. 36 (1982) 431–437.

    PubMed  CAS  Google Scholar 

  2. Neville, M.C. Calcium secretion into milk. J. Mammary Gland Biol. Neoplasia 10 (2005) 119–128.

    PubMed  Article  Google Scholar 

  3. Neville, M.C. and Peaker, M. Ionized calcium in milk and the integrity of the mammary epithelium in the goat. J. Physiol. 313 (1981) 561–570.

    PubMed  CAS  Google Scholar 

  4. Stelwagen, K., Farr, V.C., Davis, S.R. and Prosser, C.G. EGTA-induced disruption of epithelial cell tight junctions in the lactating caprine mammary gland. Am. J. Physiol. 269 (1995) R848–855.

    PubMed  CAS  Google Scholar 

  5. Grant, A.C.G., Gow, I.F., Zammit, V.A. and Shennan, D.B. Regulation of protein synthesis in lactating rat mammary tissue by cell volume. Biochim. Biophys. Acta 1475 (2000) 39–46.

    PubMed  CAS  Google Scholar 

  6. Lee, W.J., Monteith, G.R. and Roberts-Thomson, S.J. Calcium transport in the mammary gland: targets for breast cancer. Biochim. Biophys. Acta 1765 (2006) 235–255.

    PubMed  CAS  Google Scholar 

  7. Wei, N., Mi, M.T. and Zhou, Y. Influences of lovastatin on membrane ion flow and intracellular signalling in breast cancer cells. Cell. Mol. Biol. Lett. 12 (2007) 1–15.

    PubMed  Article  CAS  Google Scholar 

  8. Neville, M.C. and Watters, C.D. Secretion of calcium into milk: review. J. Dairy Sci. 66 (1983) 371–380.

    PubMed  CAS  Google Scholar 

  9. Shennan, D.B. and Peaker, M. Transport of milk constituents by the mammary gland. Physiol. Rev. 80 (2000) 925–951.

    PubMed  CAS  Google Scholar 

  10. VanHouten, J.N., Neville, M.C. and Wysolmerski, J.J. The calcium receptor regulates PMCA2 activity in mammary epithelial cells: a mechanism for calcium-regulated calcium transport into milk. Endocrinology 148 (2007) 5943–5954.

    PubMed  Article  CAS  Google Scholar 

  11. VanHouten, J.N. and Wysolmerski, J.J. Transepithelial calcium transport in mammary epithelial cells. J. Mammary Gland Biol. Neoplasia 12 (2007) 223–235.

    PubMed  Article  Google Scholar 

  12. Neville, M.C. and Peaker, M. The secretion of calcium and phosphorous into milk. J. Physiol. 290 (1979) 59–67.

    PubMed  CAS  Google Scholar 

  13. Twardock, A.R. and Comar, C.L. Calcium and strontium secretion from blood to milk. Am. J. Physiol. 201 (1961) 645–650.

    PubMed  CAS  Google Scholar 

  14. Baumrucker, C.R. and Keenan, T.W. Membranes of mammary gland. X. Adenosine triphosphate dependent calcium accumulation by Golgi apparatus rich fractions from bovine mammary gland. Exp. Cell Res. 90 (1975) 253–260.

    PubMed  Article  CAS  Google Scholar 

  15. West, D.W. Energy-dependent calcium sequestration activity in a Golgi apparatus fraction derived from lactating rat mammary glands. Biochim. Biophys. Acta 673 (1981) 374–386.

    PubMed  CAS  Google Scholar 

  16. Neville, M.C., Selker, F., Semple, K. and Watters, C. ATP-dependent calcium transport by a Golgi-enriched membrane fraction from mouse mammary gland. J. Membr. Biol. 61 (1981) 97–105.

    PubMed  Article  CAS  Google Scholar 

  17. Virk, S.S., Kirk, C.J. and Shears, S.B. Ca2+ transport and Ca2+-dependent ATP hydrolysis by Golgi vesicles from lactating rat mammary glands. Biochem. J. 226 (1985) 741–748.

    PubMed  CAS  Google Scholar 

  18. Bingham, E.W., McGranaghan, M.B., Wickham, E.D., Leung, C.T. and Farrell, H.M. Properties of [Ca2+ + Mg2+]-adenosine triphosphatases in the Golgi apparatus and microsomes of the lactating mammary glands of cows. J. Dairy Sci. 76 (1993) 393–400.

    PubMed  CAS  Google Scholar 

  19. Watters, C.D. A Ca2+-stimulated adenosine triphosphatase in Golgi-enriched membranes of lactating murine mammary tissue. Biochem. J. 224 (1984) 39–45.

    PubMed  CAS  Google Scholar 

  20. Reinhardt, T.A. and Horst, R.L. Ca2+-ATPases and their expression in the mammary gland of pregnant and lactating rats. Am. J. Physiol. 276 (1999) C796–C802.

    PubMed  CAS  Google Scholar 

  21. Faddy, H.M., Smart, C.E., Xu, R., Lee, G.Y., Kenny, P.A., Feng, M., Rao, R., Brown, M.A., Bissell, M.J., Roberts-Thomson, S.J. and Monteith, G.R. Localization of plasma membrane and secretory calcium pumps in the mammary gland. Biochem. Biophys. Res. Commun. 369 (2008) 977–981.

    PubMed  Article  CAS  Google Scholar 

  22. Dmitriev, R.I., Pestov, N.B., Korneeko, T.V., Kostina, M.B. and Shakhparonov, M.I. Characterization of second isoform of secretory pathway Ca2+/Mn2+-ATPase. J. Gen. Physiol. 126 (2005) 71a–72a.

    Article  CAS  Google Scholar 

  23. Prapong, S., Reinhardt, T.A., Goff, J.P. and Horst, R.L. Ca2+-adenosine triphosphatase protein expression in the mammary gland of preparturient cows. J. Dairy Sci. 88 (2005) 1741–1744.

    PubMed  CAS  Google Scholar 

  24. Anantamongkol, U., Takemura, H., Suthiphongchai, T., Krishnamra, N. and Horio, Y. Regulation of Ca2+ mobilization by prolactin in mammary gland cells: possible role of secretory pathway Ca2+-ATPase type 2. Biochem. Biophys. Res. Commun. 352 (2007) 537–542.

    PubMed  Article  CAS  Google Scholar 

  25. Holt, C. An equilibrium thermodynamic model of the sequestration of calcium phosphate by casein micelles and its application to the calculation of the partition of salts in milk. Eur. Biophys. J. 33 (2004) 421–434.

    PubMed  Article  CAS  Google Scholar 

  26. Beery, K.E., Hood, L.F. and Patton, S. Formation of casein micelles in Golgi vesicles of mammary tissue. J. Dairy Sci. 54 (1971) 911–912.

    PubMed  CAS  Article  Google Scholar 

  27. Sudlow, A.W. and Burgoyne, R.D. A hypo-osmotically induced increase in intracellular Ca2+ in lactating mouse mammary epithelial cells involving Ca2+ influx. Pflugers Arch. 433 (1997) 609–616.

    PubMed  Article  CAS  Google Scholar 

  28. Shennan, D.B., Grant, A.C. and Gow, I.F. The effect of hyposmotic and isosmotic cell swelling on the intracellular [Ca2+] in lactating rat mammary acinar cells. Mol. Cell. Biochem. 233 (2002) 91–97.

    PubMed  Article  CAS  Google Scholar 

  29. Reinhardt, T.A., Filoteo, A.G., Penniston, J.T. and Horst, R.L. Ca2+-ATPase protein expression in mammary tissue. Am. J. Physiol. 279 (2000) C1595–C1602.

    CAS  Google Scholar 

  30. Silverstein, R.S. and Tempel, B.L. Atpb2, encoding plasma membrane Ca2+-ATPase TYPE 2, (PMCA2) exhibits tissue-specific first exon usage in hair cells, neurons, and mammary glands of mice. Neuroscience 141 (2006) 245–257.

    PubMed  Article  CAS  Google Scholar 

  31. Mather, I.H. and Keenan, T.W. Origin and secretion of milk lipids. J. Mammary Gland Biol. Neoplasia 3 (1998) 258–273.

    Google Scholar 

  32. Reinhardt, T.A., Lippolis, J.D., Shull, G.E. and Horst, R.L. Null mutation in the gene encoding plasma membrane Ca2+ATPase isoform 2 impairs calcium transport into milk. J. Biol. Chem. 278 (2004) 42369–42373.

    Article  CAS  Google Scholar 

  33. Shennan, D.B. Is the milk-fat-globule membrane a model for mammary secretory cell apical membrane? Exp. Physiol. 77 (1992) 653–656.

    PubMed  CAS  Google Scholar 

  34. Shennan, D.B. K+ and Cl transport by mammary secretory cell apical membrane vesicles isolated from milk. J Dairy Res. 59 (1992) 339–348.

    PubMed  CAS  Article  Google Scholar 

  35. Sweiry, J.H. and Yudilevich, D.L. Asymmetric calcium influx and efflux at maternal and fetal sides of the guinea-pig placenta: kinetics and specificity. J. Physiol. 355 (1984) 295–311.

    PubMed  CAS  Google Scholar 

  36. Millar, I.D., Calvert, D.T., Lomax, M.A. and Shennan, D.B. The mechanism of L-glutamate transport by lactating rat mammary tissues. Biochim. Biophys. Acta 1282 (1996) 200–206.

    PubMed  Article  Google Scholar 

  37. Shennan, D.B., Calvert, D.T., Travers, M.T., Kudo, Y. and Boyd, C.A.R. A study of L-leucine, L-phenylalanine and L-alanine transport in the perfused rat mammary gland: possible involvement of LAT1 and LAT2. Biochim. Biophys. Acta 1564 (2002) 133–139.

    PubMed  Article  CAS  Google Scholar 

  38. Quensell, R.R., Erickson, J. and Schultz, B.D. Apical electrolyte concentration modulates barrier function and tight junction protein localization in bovine mammary epithelium. Am. J. Physiol. 292 (2007) C305–C318.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. Shennan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shennan, D.B. Calcium transport by mammary secretory cells: Mechanisms underlying transepithelial movement. Cell Mol Biol Lett 13, 514–525 (2008). https://doi.org/10.2478/s11658-008-0020-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-008-0020-y

Key words

  • Calcium
  • Mammary
  • Secretion