Skip to main content

Regulation of human aldoketoreductase 1C3 (AKR1C3) gene expression in the adipose tissue


Aldoketoreductase 1C3 (AKR1C3) is a functional prostaglandin F synthase and a negative modulator of the availability of ligands for the nuclear receptor peroxisome proliferator-activated receptor-gamma (PPARγ). AKR1C3 expression is known to be associated with adiposity, one of the components of the metabolic syndrome. The aim of this study was to characterize the expression of AKR1C3 in the adipose tissue and adipocytes and to investigate its potential role in the metabolic syndrome. Using microarray analysis and realtime PCR, we studied the expression of AKR1C3 in adipose tissue samples from obese subjects with or without metabolic complications, during very low calorie diet-induced weight loss, and its expression in isolated human adipocytes of different sizes. The adipose tissue AKR1C3 expression levels were marginally lower in obese subjects with the metabolic syndrome compared with the levels in healthy obese subjects when analyzed using microarray (p = 0.078) and realtime PCR (p < 0.05), suggesting a secondary or compensatory effect. The adipose tissue mRNA levels of AKR1C3 were reduced during and after dietinduced weight-loss compared to the levels before the start of the diet (p < 0.001 at all time-points). The gene expression of AKR1C3 correlated with both adipose tissue mRNA levels and serum levels of leptin before the start of the diet (p < 0.05 and p < 0.01, respectively). Furthermore, large adipocytes displayed a higher expression of AKR1C3 than small adipocytes (1.5-fold, p < 0.01). In conclusion, adipose tissue AKR1C3 expression may be affected by metabolic disease, and its levels are significantly reduced in response to dietinduced weight loss and correlate with leptin levels.


15d-PGJ2 :

15-deoxy-12,14-prostaglandin J2


aldoketoreductase 1C3


body mass index


high density lipoprotein


high sensitivity C-reactive protein


low density lipoprotein




peroxisome proliferator-activated receptor-gamma




very low calorie diet


waist-to-hip ratio


  1. Goldstein, D.J. Beneficial health effects of modest weight loss. Int. J. Obes. Relat. Metab. Disord. 16 (1992) 397–415.

    PubMed  CAS  Google Scholar 

  2. Sjöström, L., Narbro, K., Sjöström, C.D., Karason, K., Larsson, B., Wedel, H., Lystig, T., Sullivan, M., Bouchard, C., Carlsson, B., Bengtsson, C., Dahlgren, S., Gummesson, A., Jacobson, P., Karlsson, J., Lindroos, A.K., Lönroth, H., Näslund, I., Olbers, T., Stenlöf, K., Torgerson, J., ågren, G. and Carlsson, L.M. Effects of bariatric surgery on mortality in Swedish obese subjects. N. Engl. J. Med. 357 (2007) 741–752.

    PubMed  Article  Google Scholar 

  3. Rajala, M.W. and Scherer, P.E. Minireview: The adipocyte—at the crossroads of energy homeostasis, inflammation, and atherosclerosis. Endocrinology 144 (2003) 3765–3773.

    PubMed  Article  CAS  Google Scholar 

  4. Björntorp, P. Metabolic implications of body fat distribution. Diabetes Care 14 (1991) 1132–1143.

    PubMed  Article  Google Scholar 

  5. Despres, J.P., Moorjani, S., Lupien, P.J., Tremblay, A., Nadeau, A. and Bouchard, C. Regional distribution of body fat, plasma lipoproteins, and cardiovascular disease. Arteriosclerosis 10 (1990) 497–511.

    PubMed  CAS  Google Scholar 

  6. Kissebah, A.H. Intra-abdominal fat: is it a major factor in developing diabetes and coronary artery disease? Diabetes Res. Clin. Pract. 30Suppl (1996) 25–30.

    Google Scholar 

  7. Pouliot, M.C., Despres, J.P., Nadeau, A., Moorjani, S., Prud’Homme, D., Lupien, P.J., Tremblay, A. and Bouchard, C. Visceral obesity in men. Associations with glucose tolerance, plasma insulin, and lipoprotein levels. Diabetes 41 (1992) 826–834.

    PubMed  Article  CAS  Google Scholar 

  8. Montague, C.T. and O’Rahilly, S. The perils of portliness: causes and consequences of visceral adiposity. Diabetes 49 (2000) 883–888.

    PubMed  Article  CAS  Google Scholar 

  9. Gabrielsson, B.G., Johansson, J.M., Jennische, E., Jernås, M., Itoh, Y., Peltonen, M., Olbers, T., Lönn, L., Lönroth, H., Sjöström, L., Carlsson, B., Carlsson, L.M. and Lönn, M. Depot-specific expression of fibroblast growth factors in human adipose tissue. Obes. Res. 10 (2002) 608–616.

    PubMed  Article  CAS  Google Scholar 

  10. Gabrielsson, B.G., Johansson, J.M., Lönn, M., Jernås, M., Olbers, T., Peltonen, M., Larsson, I., Lönn, L., Sjöström, L., Carlsson, B. and Carlsson, L.M. High expression of complement components in omental adipose tissue in obese men. Obes. Res. 11 (2003) 699–708.

    PubMed  Article  CAS  Google Scholar 

  11. Vidal, H. Gene expression in visceral and subcutaneous adipose tissues. Ann. Med. 33 (2001) 547–555.

    PubMed  Article  CAS  Google Scholar 

  12. Blouin, K., Richard, C., Belanger, C., Dupont, P., Daris, M., Laberge, P., Luu-The, V. and Tchernof, A. Local androgen inactivation in abdominal visceral adipose tissue. J. Clin. Endocrinol. Metab. 88 (2003) 5944–5950.

    PubMed  Article  CAS  Google Scholar 

  13. Blouin, K., Richard, C., Brochu, G., Hould, F.S., Lebel, S., Marceau, S., Biron, S., Luu-The, V. and Tchernof, A. Androgen inactivation and steroidconverting enzyme expression in abdominal adipose tissue in men. J. Endocrinol. 191 (2006) 637–649.

    PubMed  Article  CAS  Google Scholar 

  14. Quinkler, M., Bujalska, I.J., Tomlinson, J.W., Smith, D.M. and Stewart, P.M. Depot-specific prostaglandin synthesis in human adipose tissue: a novel possible mechanism of adipogenesis. Gene 380 (2006) 137–143.

    PubMed  Article  CAS  Google Scholar 

  15. Quinkler, M., Sinha, B., Tomlinson, J.W., Bujalska, I.J., Stewart, P.M. and Arlt, W. Androgen generation in adipose tissue in women with simple obesity—a site-specific role for 17beta-hydroxysteroid dehydrogenase type 5. J. Endocrinol. 183 (2004) 331–342.

    PubMed  Article  CAS  Google Scholar 

  16. Lin, H.K., Jez, J.M., Schlegel, B.P., Peehl, D.M., Pachter, J.A. and Penning, T.M. Expression and characterization of recombinant type 2 3 alphahydroxysteroid dehydrogenase (HSD) from human prostate: demonstration of bifunctional 3 alpha/17 beta-HSD activity and cellular distribution. Mol. Endocrinol. 11 (1997) 1971–1984.

    PubMed  Article  CAS  Google Scholar 

  17. Penning, T.M., Burczynski, M.E., Jez, J.M., Lin, H.K., Ma, H., Moore, M., Ratnam, K. and Palackal, N. Structure-function aspects and inhibitor design of type 5 17beta-hydroxysteroid dehydrogenase (AKR1C3). Mol. Cell Endocrinol. 171 (2001) 137–149.

    PubMed  Article  CAS  Google Scholar 

  18. Desmond, J.C., Mountford, J.C., Drayson, M.T., Walker, E.A., Hewison, M., Ride, J.P., Luong, Q.T., Hayden, R.E., Vanin, E.F. and Bunce, C.M. The aldo-keto reductase AKR1C3 is a novel suppressor of cell differentiation that provides a plausible target for the non-cyclooxygenase-dependent antineoplastic actions of nonsteroidal anti-inflammatory drugs. Cancer Res. 63 (2003) 505–512.

    PubMed  CAS  Google Scholar 

  19. Spiegelman, B.M. PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. Diabetes 47 (1998) 507–514.

    PubMed  Article  CAS  Google Scholar 

  20. Palming, J., Sjöholm, K., Jernås, M., Lystig, T.C., Gummesson, A., Romeo, S., Lönn, L., Lönn, M., Carlsson, B. and Carlsson, L.M. The expression of NAD(P)H:quinone oxidoreductase 1 is high in human adipose tissue, reduced by weight loss, and correlates with adiposity, insulin sensitivity, and markers of liver dysfunction. J. Clin. Endocrinol. Metab. 92 (2007) 2346–2352.

    PubMed  Article  CAS  Google Scholar 

  21. Gummesson, A., Jernås, M., Svensson, P.A., Larsson, I., Glad, C.A., Schele, E., Gripeteg, L., Sjöholm, K., Lystig, T.C., Sjöström, L., Carlsson, B., Fagerberg, B., Carlsson, L.M. Relations of Adipose Tissue CIDEA Gene Expression to Basal Metabolic Rate, Energy Restriction, and Obesity: Population-Based and Dietary Intervention Studies. J. Clin. Endocrinol. Metab. 92 (2007) 4759–4765.

    PubMed  Article  CAS  Google Scholar 

  22. Behre, C.J., Gummesson, A., Jernås, M., Lystig, T.C., Fagerberg, B., Carlsson, B. and Carlsson, L.M. Dissociation between adipose tissue expression and serum levels of adiponectin during and after diet-induced weight loss in obese subjects with and without the metabolic syndrome. Metabolism 56 (2007) 1022–1028.

    PubMed  Article  CAS  Google Scholar 

  23. WHO 1999 Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus. In. Geneva: World Health Organization, Department of noncommunicable disease surveillance

    Google Scholar 

  24. Torgerson, J.S., Lindroos, A.K., Sjöström, C.D., Olsson, R., Lissner, L. and Sjöström, L. Are elevated aminotransferases and decreased bilirubin additional characteristics of the metabolic syndrome? Obes. Res. 5 (1997) 105–114.

    PubMed  CAS  Google Scholar 

  25. Chomczynski, P. and Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162 (1987) 156–159.

    PubMed  Article  CAS  Google Scholar 

  26. Brazma, A., Hingamp, P., Quackenbush, J., Sherlock, G., Spellman, P., Stoeckert, C., Aach, J., Ansorge, W., Ball, C.A., Causton, H.C., Gaasterland, T., Glenisson, P., Holstege, F.C., Kim, I.F., Markowitz, V., Matese, J.C., Parkinson, H., Robinson, A., Sarkans, U., Schulze-Kremer, S., Stewart, J., Taylor, R., Vilo, J. and Vingron, M. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat. Genet. 29 (2001) 365–371.

    PubMed  Article  CAS  Google Scholar 

  27. Karason, K., Jernås, M., Hägg, D.A. and Svensson, P.A. Evaluation of CXCL9 and CXCL10 as circulating biomarkers of human cardiac allograft rejection. BMC Cardiovasc. Disord. 6 (2006) 29.

    PubMed  Article  Google Scholar 

  28. Jernås, M., Palming, J., Sjöholm, K., Jennische, E., Svensson, P.A., Gabrielsson, B.G., Levin, M., Sjögren, A., Rudemo, M., Lystig, T.C., Carlsson, B., Carlsson, L.M. and Lönn, M. Separation of human adipocytes by size: hypertrophic fat cells display distinct gene expression. Faseb J. 20 (2006) 1540–1542.

    PubMed  Article  Google Scholar 

  29. Gabrielsson, B.G., Olofsson, L.E., Sjögren, A., Jernås, M., Elander, A., Lönn, M., Rudemo, M. and Carlsson, L.M. Evaluation of reference genes for studies of gene expression in human adipose tissue. Obes. Res. 13 (2005) 649–652.

    PubMed  Article  Google Scholar 

  30. Weyer, C., Foley, J.E., Bogardus, C., Tataranni, P.A. and Pratley, R.E. Enlarged subcutaneous abdominal adipocyte size, but not obesity itself, predicts type II diabetes independent of insulin resistance. Diabetologia 43 (2000) 1498–1506.

    PubMed  Article  CAS  Google Scholar 

  31. Wake, D.J., Strand, M., Rask, E., Westerbacka, J., Livingstone, D.E., Soderberg, S., Andrew, R., Yki-Jarvinen, H., Olsson, T. and Walker, B.R. Intra-adipose sex steroid metabolism and body fat distribution in idiopathic human obesity. Clin. Endocrinol. (Oxf) 66 (2007) 440–446.

    Article  CAS  Google Scholar 

  32. Reginato, M.J., Krakow, S.L., Bailey, S.T. and Lazar, M.A. Prostaglandins promote and block adipogenesis through opposing effects on peroxisome proliferator-activated receptor gamma. J. Biol. Chem. 273 (1998) 1855–1858.

    PubMed  Article  CAS  Google Scholar 

  33. Barrett-Connor, E. Lower endogenous androgen levels and dyslipidemia in men with non-insulin-dependent diabetes mellitus. Ann. Intern. Med. 117 (1992) 807–811.

    PubMed  CAS  Google Scholar 

  34. Haffner, S.M., Valdez, R.A., Stern, M.P. and Katz, M.S. Obesity, body fat distribution and sex hormones in men. Int. J. Obes. Relat. Metab. Disord. 17 (1993) 643–649.

    PubMed  CAS  Google Scholar 

  35. Day, C. Metabolic syndrome, or What you will: definitions and epidemiology. Diab. Vasc. Dis. Res. 4 (2007) 32–38.

    PubMed  Article  Google Scholar 

  36. Peeraully, M.R., Sievert, H., Bullo, M., Wang, B. and Trayhurn, P. Prostaglandin D2 and J2-series (PGJ2, Delta12-PGJ2) prostaglandins stimulate IL-6 and MCP-1, but inhibit leptin, expression and secretion by 3T3-L1 adipocytes. Pflugers Arch. 453 (2006) 177–187.

    PubMed  Article  CAS  Google Scholar 

  37. Lundgren, M., Svensson, M., Lindmark, S., Renström, F., Ruge, T. and Eriksson, J.W. Fat cell enlargement is an independent marker of insulin resistance and’ hyperleptinaemia’. Diabetologia 50 (2007) 625–633.

    PubMed  Article  CAS  Google Scholar 

  38. McLaughlin, T., Sherman, A., Tsao, P., Gonzalez, O., Yee, G., Lamendola, C., Reaven, G.M. and Cushman, S.W. Enhanced proportion of small adipose cells in insulin-resistant vs insulin-sensitive obese individuals implicates impaired adipogenesis. Diabetologia 50 (2007) 1707–1715.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Kajsa Sjöholm.

Additional information

These authors contributed equally to this study

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Svensson, Pa., Gabrielsson, B.G., Jernås, M. et al. Regulation of human aldoketoreductase 1C3 (AKR1C3) gene expression in the adipose tissue. Cell Mol Biol Lett 13, 599–613 (2008).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Key words

  • Metabolic syndrome
  • Adipose tissue
  • Adipocytes
  • Diet-induced weight loss
  • Aldoketoreductase 1C3
  • 15-deoxy-12,14-prostaglandin J2