Skip to main content

The effects of superoxide dismutase knockout on the oxidative stress parameters and survival of mouse erythrocyt

Abstract

The erythrocytes of 12-month old Sod1 −/− mice showed an increased level of reactive oxygen species (ROS), as estimated by the degree of dihydroethidine and dihydrorhodamine oxidation, and the increased level of Heinz bodies. No indices of severe oxidative stress were found in the red blood cells and blood plasma of Sod1 −/− mice as judged from the lack of significant changes in the levels of erythrocyte and plasma glutathione, plasma protein thiol and carbonyl groups and thiobarbituric-acid reactive substances in the blood plasma. However, a decreased erythrocyte lifespan, increased reticulocyte count and splenomegaly were noted, indicating the importance of superoxide dismutase for maintaining erythrocyte viability. The levels of erythrocyte ROS and Heinz bodies and the reticulocyte count were indistinguishable in Sod1 +/+ and Sod1 +/− mice, suggesting that a superoxide dismutase activity decrease to half of its normal value may be sufficient to secure the protective effects of the enzyme.

Abbreviations

DMSO:

dimethylsulfoxide

DT:

dithionite

DTPA:

diethylenetriaminepentaacetatic acid

EDTA:

ethylenediaminetetraacetic acid

GPx:

glutathione peroxidase

GSH:

glutathione

GSSG:

glutathione disulfide

Hb:

hemoglobin

HB:

Heinz bodies

HBS:

Hank’s buffered solution

Ig:

immunoglobulin

KO:

knockout

NEM:

N-ethylmaleimide

NHS:

N-hydroxysuccinimide

PE:

phycoerythrin

Prdx:

peroxiredoxin

RBC:

red blood cell

SOD:

superoxide dismutase

TBARS:

thiobarbituric-acid reactive substances

tBOOH:

tert-butyl hydroperoxide

References

  1. Mehta, A.B. Glucose-6-phosphate dehydrogenase deficiency. Postgrad. Med. J. 70 (1994) 871–877.

    PubMed  CAS  Google Scholar 

  2. Ho, H.Y., Cheng, M.L. and Chiu, D.T. Glucose-6-phosphate dehydrogenase—from oxidative stress to cellular functions and degenerative diseases. Redox Rep. 12 (2007) 109–118.

    PubMed  Article  CAS  Google Scholar 

  3. Góth, L., Rass, P. and Páy, A. Catalase enzyme mutations and their association with diseases. Mol. Diagn. 8 (2004) 141–149.

    PubMed  Article  Google Scholar 

  4. Beutler, E. Red cell enzyme deficiencies as non-disease. Biomed. Biochim. Acta 42 (1983) S234–S241.

    CAS  Google Scholar 

  5. Neumann, C.A., Krause, D.S., Carman, C.V., Das, S., Dubey, D.P., Abraham, J.L., Bronson, R.T., Fujiwara, Y., Orkin, S.H. and Van Etten, R.A. Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression. Nature 424 (2003) 561–565.

    PubMed  Article  CAS  Google Scholar 

  6. Elchuri, S., Oberley, T.D., Qi, W., Eisenstein, R.S., Jackson Roberts, L., Van Remmen, H., Epstein, C.J. and Huang, T.T. CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life. Oncogene 24 (2005) 367–380.

    PubMed  Article  CAS  Google Scholar 

  7. Sentman, M.L., Granström, M., Jakobson, H., Reaume, A., Basu, S. and Marklund, S.L. Phenotypes of mice lacking extracellular superoxide dismutase and copper- and zinc-containing superoxide dismutase. J. Biol. Chem. 281 (2006) 6904–6909.

    PubMed  Article  CAS  Google Scholar 

  8. Muller, F.L., Song, W., Liu, Y., Chaudhuri, A., Pieke-Dahl, S., Strong, R., Huang, T. T., Epstein, C.J., Roberts, L.J.N., Csete, M., Faulkner, J.A. and Van Remmen, H. Absence of CuZn superoxide dismutase leads to elevated oxidative stress and acceleration of age-dependent skeletal muscle atrophy. Free Radic. Biol. Med. 40 (2006) 1993–2004.

    PubMed  Article  CAS  Google Scholar 

  9. Iuchi, Y., Okada, F., Onuma, K., Onoda, T., Asao, H., Kobayashi, M. and Fujii, J. Elevated oxidative stress in erythrocytes due to a SOD1 deficiency causes anaemia and triggers autoantibody production. Biochem. J. 402 (2007) 219–227.

    PubMed  Article  CAS  Google Scholar 

  10. Matzuk, M.M., Dionne, L., Guo, Q., Kumar, T.R. and Lebovitz, R.M. Ovarian function in superoxide dismutase 1 and 2 knockout mice. Endocrinology 139 (1998) 4008–4011.

    PubMed  Article  CAS  Google Scholar 

  11. Judkiewicz, L., Bartosz, G., Oplatowska, A. and Szczepanek, A. Modified osmotic fragility test for the laboratory diagnosis of hereditary spherocytosis. Am. J. Hematol. 31 (1989) 136–137.

    PubMed  Article  CAS  Google Scholar 

  12. Misra, H.P. and Fridovich, I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 247 (1972) 3170–3175.

    PubMed  CAS  Google Scholar 

  13. Bartosz, G. The other face of oxygen. Free radicals in nature. 2003. Warsaw: Polish Scientific Publishers.

    Google Scholar 

  14. Fossati, P., Prencipe, L. and Berti, G. Use of 3,5-dichloro-2-hydroxybenzenesulfonic acid/4-aminophenazone chromogenic system in direct enzymic assay of uric acid in serum and urine. Clin. Chem. 26 (1980) 227–231.

    PubMed  CAS  Google Scholar 

  15. Smith, A.D. and Levander, O.A. High-throughput 96-well microplate assays for determining specific activities of glutathione peroxidase and thioredoxin reductase. Methods Enzymol. 347 (2002) 113–121.

    PubMed  Article  CAS  Google Scholar 

  16. Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193 (1951) 265–275.

    PubMed  CAS  Google Scholar 

  17. Ellman, G. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82 (1959) 70–77.

    PubMed  Article  CAS  Google Scholar 

  18. Patsoukis, N. and Georgiou, C.D. Fluorometric determination of thiol redox state. Anal. Bioanal. Chem. 383 (2005) 923–929.

    PubMed  Article  CAS  Google Scholar 

  19. Senft, A.P., Dalton, T.P. and Shertzer, H.G. Determining glutathione and glutathione disulfide using the fluorescence probe o-phthalaldehyde. Anal. Biochem. 280 (2000) 80–86.

    PubMed  Article  CAS  Google Scholar 

  20. Stocks, J., Gutteridge, J.M.C., Sharp, R.J. and Dormandy, T.L. The inhibition of lipid autoxidation by human serum and its relation to serum proteins and alpha-tocopherol. Clin. Sci. Mol. Med. 47 (1974) 223–233.

    PubMed  CAS  Google Scholar 

  21. Alayash, A.I., Patel, R.P. and Cashon, R.E. Redox reactions of hemoglobin and myoglobin: biological and toxicological implications. Antioxid. Redox Signal. 3 (2001) 313–327.

    PubMed  Article  CAS  Google Scholar 

  22. Bartosz, G. Artifactual peroxidase activity in animal tissues. Clin. Chem. 30 (1984) 598.

    PubMed  CAS  Google Scholar 

  23. Starzynski, R.R., Lipinski, P., Drapier, J.C., Diet, A., Smuda, E., Bartlomiejczyk, T., Gralak, M.A. and Kruszewski, M. Down-regulation of iron regulatory protein 1 activities and expression in superoxide dismutase 1 knock-out mice is not associated with alterations in iron metabolism. J. Biol. Chem. 280 (2005) 4207–4712.

    PubMed  Article  CAS  Google Scholar 

  24. Bartosz, G. Use of spectroscopic probes for detection of reactive oxygen species. Clin. Chim. Acta 368 (2006) 53–76.

    PubMed  Article  CAS  Google Scholar 

  25. Wardman, P. Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: progress, pitfalls, and prospects. Free Radic. Biol. Med. 43 (2007) 995–1022.

    PubMed  Article  CAS  Google Scholar 

  26. Jackson, M.J. Lack of CuZnSOD activity: A pointer to the mechanism underying age-related loss of muscle function, a commentary on “Absence of CuZn superoxide dismutase leads to elevated oxidative stress and acceleration of age-dependent skeletal muscle atrophy”. Free Radic. Biol. Med. 40 (2006) 1900–1902.

    PubMed  Article  CAS  Google Scholar 

  27. Lutz, H.U. Innate immune and non-immune mediators of erythrocyte clearance. Cell. Mol. Biol. 50 (2004) 107–116.

    PubMed  CAS  Google Scholar 

  28. Zupko, I., Hohmann, J., Redei, D., Falkay, G., Janicsak, G. and Mathe, I. Antioxidant activity of leaves of Salvia species in enzyme-dependent and enzyme-independent systems of lipid peroxidation and their phenolic constituents. Planta Med. 67 (2001) 366–368.

    PubMed  Article  CAS  Google Scholar 

  29. Prall, Y.G., Gambhir, K.K. and Ampy, F.R. Acetylcholinesterase: an enzymatic marker of human red blood cell aging. Life Sci. 63 (1998) 177–184.

    PubMed  Article  CAS  Google Scholar 

  30. Bartosz, G. Erythrocyte aging: physical and chemical membrane changes. Gerontology 37 (1991) 33–67.

    PubMed  CAS  Article  Google Scholar 

  31. Bartosz, G. Aging of the erythrocyte. VII. On the possible causes of inactivation of red cell enzymes. Mech. Ageing Dev. 13 (1980) 379–385.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Łukasz Piotrowski.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Grzelak, A., Kruszewski, M., Macierzyńska, E. et al. The effects of superoxide dismutase knockout on the oxidative stress parameters and survival of mouse erythrocyt. Cell Mol Biol Lett 14, 23–34 (2009). https://doi.org/10.2478/s11658-008-0031-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-008-0031-8

Key words

  • Superoxide dismutase
  • Erythrocyte
  • Red blood cell
  • Reactive oxygen species
  • Oxidative stress
  • Heinz bodies
  • Acetylcholinesterase