Skip to main content

The ceramide structure of GM1 ganglioside differently affects its recovery in low-density membrane fractions prepared from HL-60 cells with or without triton-X100


Gangliosides are characteristically enriched in various membrane domains that can be isolated as low density membrane fraction insoluble in detergents (detergent-resistant membranes, DRMs) or obtained after homogenization and sonication in 0.5 M sodium carbonate (low-density membranes, LDMs). We assessed the effect of the ceramide structure of four [3H]-labeled GM1 ganglioside molecular species (GM1s) taken up by HL-60 cells on their occurrence in LDMs, and compared it with our previous observations for DRMs. All GM1s contained C18 sphingosine, which was acetylated in GM1(18:1/2) or acylated with C14, C18 or C18:1 fatty acids (Fas)



crude plasma membranes


cholera toxin


detergent-resistant membranes


fatty acid

GM1 ganglioside:

Galβ3GalNAcβ4 (Neu5Acα3)Galβ4GlcCer (GM1s are abbreviated according to Palestini et al. [39] as follows: GM1(18:1/2), GM1 with N-acetylated C18 sphingosine; GM1(18:1/14), GM1 with myristic acid-acylated C18 sphingosine; GM1(18:1/18), GM1 with stearic acid-acylated C18 sphingosine; and GM1(18:1/18:1), GM1 with oleic acid-acylated C18 sphingosine)


low-density membrane fraction

ld :

liquid disordered

lo :

liquid ordered

medium H:

RPMI 1640 medium containing 10 mM Hepes buffer, pH 7.3, and 5 μg/ml insulin and transferrin


PBS containing 0.1% gelatin

sodium carbonate buffer:

a solution consisting of 2.5 mM Tris, 500 mM Na2CO3, 5 mM NaCl, 2.5 mM EDTA, pH 11.0, 2 mM Pefabloc SC and chymostatin, leupeptin, antipain, and pepstatin, each at 5 μg/ml


Triton X-100


  1. Hakomori, S. Glycosphingolipids in cellular interaction, differentiation, and oncogenesis. Annu. Rev. Biochem. 50 (1981) 733–764.

    PubMed  Article  CAS  Google Scholar 

  2. Wiegandt, H. Gangliosides. In: New Comprehensive Biochemistry (Wiegandt, H. Ed.) Elsevier, Amsterdam, Vol. 10, 1985, 199–260.

    Google Scholar 

  3. Degroote, S., Wolthoorn, J. and van Meer, G. The cell biology of glycosphingolipids. Semin. Cell Develop. Biol. 15 (2004) 375–387.

    Article  CAS  Google Scholar 

  4. Spiegel, S., Kassis, S., Wilchek, M. and Fishman, P.H. Direct visualization of redistribution and capping of fluorescent gangliosides on lymphocytes. J. Cell Biol. 99 (1984) 1575–1581.

    PubMed  Article  CAS  Google Scholar 

  5. Fujita, A., Cheng, J., Hirakawa, M., Furukawa, K., Kusunoki, S. and Fujimoto, T. Gangliosides GM1 and GM3 in the living cell membrane form clusters susceptible to cholesterol depletion and chilling. Mol. Biol. Cell 18 (2007) 2112–2122.

    PubMed  Article  CAS  Google Scholar 

  6. Thorne, R.F., Mhaidat, N.M., Ralston, K.J. and Burns, G.F. Shed gangliosides provide detergent-independent evidence for Type-3 glycosynapse. Biochem. Biophys. Res. Commun. 356 (2007) 306–311.

    PubMed  Article  CAS  Google Scholar 

  7. Iwabuchi, K., Handa, K. and Hakomori, S. Separation of “glycosphingolipid signaling domain” from caveolin-containing membrane fraction in mouse melanoma B16 cells and its role in cell adhesion coupled with signaling. J. Biol. Chem. 273 (1998) 33766–33773.

    PubMed  Article  CAS  Google Scholar 

  8. Hakomori, S. Cell adhesion/recognition and signal transduction through glycosphingolipid microdomain. Glycoconjugate J. 17 (2000) 143–151.

    Article  CAS  Google Scholar 

  9. Hakomori, S. The glycosynapse. Proc. Nat. Acad. Sci. U.S.A. 99 (2002) 225–232.

    Article  CAS  Google Scholar 

  10. Simons, M., Friedrichson, T., Schultz, J.B., Pitto, M., Masserini, M. and Kurzhalia, T. Exogenous administration of gangliosides displaces GPI-anchored proteins from lipid microdomains in living cells. Mol. Cell. Biol. 10 (1999) 3187–3193.

    CAS  Google Scholar 

  11. Kim, H.Y., Park, S.J., Joe, E.H and Jou, I. Raft-mediated Src homology 2 domain-containing protein-tyrosine phosphatase 2 (SHP-2) regulation in microglia. J. Biol. Chem. 281 (2006) 11872–11878.

    PubMed  Article  CAS  Google Scholar 

  12. Kabayama, K., Sato, T., Saito, K., Loberto, N., Prinetti, A., Sonnino, S., Kinjo, M., Igarashi, Y. and Inokuchi, J. Dissociation of the insulin receptor and caveolin-1 complex by ganglioside GM3 in the state of insulin resistance. Proc. Nat. Acad. Sci. U.S.A. 104 (2007) 13678–13683.

    Article  CAS  Google Scholar 

  13. Odintsova, E., Butters, T.D., Monti, E., Sprong, H., Van Meer, G. and Berditchevski, F. Gangliosides play an important role in the organization of CD82-enriched microdomains. Biochem. J. 400 (2006) 315–325.

    PubMed  Article  CAS  Google Scholar 

  14. Mitsuda, T., Furukawa, K., Fukumoto, S., Miyazaki, H., Urano, T. and Furukawa, K. Overexpression of ganglioside GM1 results in the dispersion of platelet-derived growth factor receptor from glycolipid-enriched microdomains and in the suppression of cell growth signals. J. Biol. Chem. 277 (2002) 11239–11246.

    PubMed  Article  CAS  Google Scholar 

  15. Nishio, M., Fukumoto, S., Furukawa, K., Ichimura, A., Miyazaki, H., Kusunoki, S., Urano, T. and Furukawa, K. Overexpressed GM1 suppresses nerve growth factor (NGF) signals by modulating the intracellular localization of NGF receptors and membrane fluidity in PC18 cells. J. Biol. Chem. 279 (2004) 33368–33378.

    PubMed  Article  CAS  Google Scholar 

  16. Panasiewicz, M., Domek, H., Hoser, G., Kawalec, M. and Pacuszka, T. Structure of the ceramide moiety of GM1 ganglioside determines its occurrence in different detergent-resistant membrane domains. Biochemistry 42 (2003) 6608–6619.

    PubMed  Article  CAS  Google Scholar 

  17. Heerklotz, H. Triton promotes domain formation in lipid raft mixtures. Biophys. J. 83 (2002) 2693–2701.

    PubMed  Article  CAS  Google Scholar 

  18. Schuck, S., Honsho, M., Ekroos, K., Shevchenko, S. and Simons, K. Resistance of cell membranes to different detergents. Proc. Nat. Acad. Sci. U.S.A. 100 (2003) 5795–5800.

    Article  CAS  Google Scholar 

  19. Shogomori, H. and Brown, D.A. Use of detergents to study membrane rafts: the good, the bad, and the ugly. Biol. Chem. 384 (2003) 1259–1263.

    PubMed  Article  CAS  Google Scholar 

  20. Lichtenberg, D., Goñi, F.M. and Heerklotz, H. Detergent-resistant membranes should not be identified with membrane rafts. Trends Biochem. Sci. 30 (2005) 430–436.

    PubMed  Article  CAS  Google Scholar 

  21. Song, K.S., Li S, Okamoto, T., Quilliam, L., Sargiacomo, M. and Lisanti, M.P. Co-purification and direct interaction of ras with caveolin, an integral membrane protein of caveolae microdomains. J. Biol. Chem. 271 (1996) 9690–9697.

    PubMed  Article  CAS  Google Scholar 

  22. Saqr, H.E., Pearl, D.K. and Yates, A.J. A review and predictive models of ganglioside uptake by biological membranes. J. Neurochem. 61 (1993) 395–411.

    PubMed  CAS  Google Scholar 

  23. Schwarzmann, G. Uptake and metabolism of exogenous glycosphingolipids by cultured cells. Semin. Cell Develop. Biol. 12 (2001) 163–171.

    Article  CAS  Google Scholar 

  24. Yanagida, M., Nakayama, H., Yoshizaki, F., Fujimura, T., Takamori, K., Ogawa, H. and Iwabuchi, K. Proteomic analysis of plasma membrane lipid rafts of HL-60 cells. Proteomics 7 (2007) 2398–2409.

    PubMed  Article  CAS  Google Scholar 

  25. Sonnino, S., Chigorno, V. and Tettamanti, G. Preparation of radioactive gangliosides, 3H or 14C isotopically labeled at oligosaccharide or ceramide moieties. Methods Enzymol. 311 (2000) 639–656.

    PubMed  Article  CAS  Google Scholar 

  26. Wilson, B.S., Steinberg, S.L., Liederman, K., Pfeiffer, J.R., Surviladze, Z., Zhang, J., Samelson, E., Yang, L., Kotula, P.G. and Oliver, J.M. Markers for detergent-resistant lipid rafts occupy distinct and dynamic domains in native membranes. Mol. Biol. Cell 15 (2004) 2580–2592.

    PubMed  Article  CAS  Google Scholar 

  27. Ermini, L., Secciani, F., La Sala, G.B., Sabatini, L., Fineschi, D., Hale, G. and Rosami, F. Different glycoforms of the human GPI-anchored antygen CD52 associate differently with lipid microdomains in leukocytem and sperm membranes. Biochem. Biophys. Res. Commun. 338 (2007) 1275–1283.

    Article  CAS  Google Scholar 

  28. Foster, L.J., de Hoog, C.L. and Mann, M. Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors. Proc. Nat. Acad. Sci. U.S.A. 100 (2003) 5813–5818.

    Article  CAS  Google Scholar 

  29. Pike, L. Rafts defined: a report on the Keystone symposium on lipid rafts and cell function. J. Lipid. Res. 47 (2006) 1597–1598.

    PubMed  Article  CAS  Google Scholar 

  30. Brown, D. A. Lipid rafts, detergent-resistant membranes, and raft targeting signals. Physiology 21 (2006) 430–439.

    PubMed  Article  CAS  Google Scholar 

  31. Brügger, B., Glass, B., Haberkant, P., Leibrecht, I., Wieland, F.T. and Kräusslich, H.G. The HIV lipidome: a raft with an unusual composition. Proc. Nat. Acad. Sci. U.S.A. 103 (2006) 2641–2646.

    Article  CAS  Google Scholar 

  32. Fridriksson, E.K., Shipkova, P., Sheets, E.D, Holowka, D., Baird B. and McLafferty, F.W. Quantitative analysis of phospholipids in functionally important membrane domains from RBL-2H3 mast cells using tandem high-resolution mass spectrometry. Biochemistry 38 (1999) 8056–8063.

    PubMed  Article  CAS  Google Scholar 

  33. Pitto, M., Parenti, M., Guzzi, F., Magni, F., Palestini, P., Ravasi, D. and Masserini, M. Palmitic is the main fatty acid carried by lipids of detergentresistant membrane fractions from neural and non-neural cells. Neurochem. Res. 27 (2002) 729–734.

    PubMed  Article  CAS  Google Scholar 

  34. Rex, M., Elliot, M.H., Brush, S. and Anderson, R.E. Detailed characterization of the lipid composition of detergent-resistant membranes from photoreceptor rod outer segment membranes. Invest. Ophtalmol. Vis. Sci. 46 (2005) 1147–1154.

    Article  Google Scholar 

  35. Brown, D.A. and London, E. Structure and function of sphingolipid-and cholesterol-rich membrane rafts. J. Biol. Chem. 275 (2000) 17221–17224.

    PubMed  Article  CAS  Google Scholar 

  36. Pike, L., Han, X., Chung, K.N. and Gross, R.W. Lipid rafts are enriched in arachidonic acid and plasmenylethanolamine and their composition is independent of caveolin-1 expression: a quantitative electrospray ionization/mass spectrometric analysis. Biochemistry 41 (2002) 2075–2088.

    PubMed  Article  CAS  Google Scholar 

  37. Kim, K.B., Kim, S.I., Choo, H.J, Kim, J.H. and Ko, Y.G. Two-dimensional electrophoretic analysis reveals that lipid rafts are intact at physiological temperature. Proteomics 4 (2004) 3527–3535.

    PubMed  Article  CAS  Google Scholar 

  38. Babiychuk, E.B. and Draeger, A. Biochemical characterization of detergent-resistant membranes: a systematic approach. Biochem. J. 397 (2006) 407–416.

    PubMed  Article  CAS  Google Scholar 

  39. Palestini, P., Alietta, M., Sonnino, S., Tettamanti, G., Thompson, T.E. and Tillack, T.W. Gel phase preference of ganglioside GM1 at low concentration in two-component, two-phase phosphatidylcholine bilayers depends upon the ceramide moiety. Biochim. Biophys. Acta 1235 (1995) 221–230.

    PubMed  Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Tadeusz Pacuszka.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Panasiewicz, M., Domek, H., Hoser, G. et al. The ceramide structure of GM1 ganglioside differently affects its recovery in low-density membrane fractions prepared from HL-60 cells with or without triton-X100. Cell Mol Biol Lett 14, 175–189 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Ceramide
  • Gangliosides
  • GM1
  • Membrane domains
  • Myristic acid
  • Sonication